Энергосбережение с помощью компонентов систем компенсации реактивной мощности от компании «ETI»

Опубликовано: 24 апреля 2012 г. в 12:57, 723 просмотраКомментировать

В условиях дефицита и увеличения стоимости энергоресурсов, роста объемов производства и инфраструктуры городов все более актуальной становится проблема энергосбережения и экономии электроэнергии в частности.

Большинство электроустановок наряду с активной мощностью потребляют и реактивную мощность, которая расходуется на создание электромагнитных полей и является бесполезной для потребителя. Наличие реактивной мощности снижает качество электроэнергии, приводит к таким явлениям, как увеличение платы за электроэнергию, дополнительные потери электроэнергии и перегрев проводов, перегрузка подстанций, необходимость завышения мощности трансформаторов и сечения кабелей, просадки напряжения в электросети. В настоящее время прирост потребления реактивной мощности превышает рост потребления активной мощности вследствие бурного внедрения современных электротехнических устройств (системы освещения и рекламы, устройства кондиционирования, частотные преобразователи электроприводов, импульсные блоки питания и т.д.).

В электрических сетях с чисто активной нагрузкой протекающий ток не опережает напряжение и не запаздывает по отношению к нему. При индуктивной нагрузке ток отстает от напряжения, при емкостной — опережает напряжение. Индуктивный характер нагрузка имеет при работе электродвигателей, компрессоров, электромагнитов и др., что наиболее типично для большинства потребителей. В этом случае снижается коэффициент мощности, и для его повышения необходимо подключать емкостную нагрузку, которая компенсирует индуктивную составляющую. В результате, это приводит к тому, что суммарная нагрузка становится чисто активной и коэффициент мощности приобретает максимальное значение.

Применение конденсаторных установок, работающих в автоматическом режиме, позволяет компенсировать реактивную мощность и, тем самым, снизить общие потери потребителя.

В частности, при повышении cos φ c 0.5 до 0,9 снижение общей потребляемой мощности составляет около 44%, экономический эффект оценивается в 15-25% от потребления электроэнергии, что в свою очередь приводит к экономии топлива;

Применение установок КРМ эффективно на предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, то есть на производствах металлургической, горнодобывающей, пищевой промышленности, в машиностроении, деревообработке и производстве стройматериалов — то есть везде, где из-за специфики производственных и технологических процессов значение cos(ф) колеблется от 0,5 до 0,8.

Применение установок компенсации реактивной мощности необходимо на предприятиях, использующих:

  • Асинхронные двигатели (cos(ф) ~ 0.7)
  • Асинхронные двигатели, при неполной загрузке (cos(ф) ~ 0.5)
  • Выпрямительные электролизные установки (cos(ф) ~ 0.6)
  • Электродуговые печи (cos(ф) ~ 0.6)
  • Индукционные печи (cos(ф) ~ 0.2-0.6)
  • Водяные насосы (cos(ф) ~ 0.8)
  • Компрессоры (cos(ф) ~ 0.7)
  • Машины, станки (cos(ф) ~ 0.5)
  • Сварочные трансформаторы (cos(ф) ~ 0.4)
  • Лампы дневного света (cos(ф) ~ 0.5-0.6)

Применение установок компенсации реактивной мощности эффективно в производствах:

  • Мясоперерабатывающее (cos(ф) ~ 0.6-0.7)
  • Хлебопекарное (cos(ф) ~ 0.6-0.7)
  • Лесопильное (cos(ф) ~ 0.55-0.65)
  • Молочное (cos(ф) ~ 0.6-0.8)
  • Механообрабатывающее (cos(ф) ~ 0.5-0.6)
  • Авторемонтное (cos(ф) ~ 0.7-0.8)
  • Пивоваренный завод (cos(ф) ~ 0.6)
  • Цементный завод (cos(ф) ~ 0.7)
  • Деревообрабатывающее предприятие (cos(ф) ~ 0.6)
  • Горный разрез (cos(ф) ~ 0.6)
  • Сталелитейный завод (cos(ф) ~ 0.6)
  • Табачная фабрика (cos(ф) ~ 0.8)
  • Порты (cos(ф) ~ 0.5).

Для различных объектов экономический эффект оценивается в 15-25% от потребления электроэнергии.

Применение компенсации реактивной мощности позволяет:

  • уменьшить нагрузку на трансформаторы, увеличить срок их службы;
  • уменьшить нагрузку на кабели, провода, уменьшить их сечение;
  • улучшить качество электроэнергии для потребителей;
  • уменьшить нагрузку на коммутационную аппаратуру, за счет снижения токов в цепях;
  • снизить расходы на электроэнергию;
  • уменьшить уровень высших гармоник в сети.

Компания «ЭТИ электроэлемент», предлагающая качественное электротехническое оборудование, заслужившее признание в Европе и на Украине, предлагает простое и решение — компоненты систем компенсации реактивной мощности с новым контроллером PFC.

Данное устройство при разных нагрузках отслеживает активную и реактивную составляющую мощности путем измерения мгновенных значений напряжений и тока электрической сети. На основе этих измерений вычисляется фазовый сдвиг между током и напряжением, и полученное значение сравнивается с предварительно заданной величиной косинуса φ. В зависимостиот фактического отклонения коэффициента мощности контроллер подает команду на управление ступенями конденсаторных батарей с минимальным временем реакции (от 4 секунд). Принцип работы данного устройства основан на системе FCP (fast Computerized Program), которая позволяет контроллеру производить мгновенное измерение значений напряжения и тока (тем самым, предоставляя точную информацию о состоянии системы) и осуществлять оптимальное управление компенсацией. Система PFC также позволяет минимизировать количество операций, увеличивая ресурс конденсаторных батарей, а также увеличить скорость реакции, уменьшая энергетические потери. Контроллер является полностью автоматическим устройством для управления компенсацией реактивной мощности. Высокая точность определения тока и коэффициента мощности достигается цифровой обработке измеренных значений тока и напряжения.

Устройство вычисляет фундаментальный компонент гармоник активных и реактивных токов, таким образом, обеспечивается точное измерение и управление, даже если форма токового сигнала искажена высшими гармониками сети.

Особенностью нового контроллера являются специализированные функции автоматической настройки ступеней без участия персонала, а также, функции нескольких фиксированных программ работы ступеней, возможность подключения и программирования внешнего вентилятора для охлаждения конденсаторных батарей, предусмотрен аварийный сигнал превышения температуры. При отсутствии необходимости автоматизированной настройки, все параметры могут быть заданы вручную.

Клеммы питания 230V AC используются также и для измерения напряжения. Вход для измерения тока рассчитан на трансформатор тока, с номинальным током вторичной обмотки 5А. Измерительные входы могут подключаться к контроллеру в любых комбинациях т.е. при любом напряжении и любой фазе тока 2х230/415V AC сети.

Контроллер имеет автоматическую самонастройку. Он автоматически определяет фазу, в которую установлен трансформатор тока и мощность каждой подключенной конденсаторной ступени. Есть возможность ручной установки этих параметров. Любую ступень можно включить и выключить вручную.

Эти контроллеры работают во всех четырех квадрантах, и цикл переключения зависит от отклонения установленного коэффициента мощности и наличия недокомпенсации или перекомпенсации. Путем вычисления необходимой мощности контроллер достигает установленного коэффициента мощности с минимальными периодами переключения каждой ступени и выбирает те ступени, которые были отключены самое длительное время. Все присоединенные ступени автоматически проверяются. В случае, если мощность ступени уменьшается или полностью исчезает, ступень становится временно выведенной из эксплуатации. Эта ступень периодически тестируется, при наборе установленного коэффициента мощности, и если это необходимо, вновь вводится в эксплуатацию.

Преимущества контроллеров компенсации реактивной мощности:

  • малые потери (до 0,5 Вт на 1 кВАр мощности);
  • простой монтаж и эксплуатация;
  • возможность подключения в любой точки электросети;
  • небольшие эксплуатационные затраты;
  • возможность компенсации практически любой реактивной мощности;
  • быстрая окупаемость (до 1 года).

Необходимыми компонентами для системы компенсации реактивной мощности с помощью контроллера являются конденсаторные банки и контакторы к ним.

Конденсаторы состоят из цилиндрического алюминиевого корпуса, внутри которого установлен диэлектрик с тремя пропиленовыми металлизированными слоями, что позволяет обеспечить низкий уровень потерь, высокую устойчивость к большим импульсным токам. Пропиленовая пленка производится из смеси цинка и алюминия, толщиной 10-50 нм. Применение данного материала позволяет добиться эффекта самовосстановления в случае возникновения пробоя пробоя диэлектрика между обкладками конденсатора. В свою очередь, способность к самовосстановлению гарантирует высокую надежность и длительный срок эксплуатации конденсатора. На всех стадиях процесса производства конденсаторов проводятся измерения основных параметров изделия.

Компания «ЭТИ электроэлемент» предлагает конденсаторы для внутренней установки серии KNK следующих типов:

  • KNK 5065, KNK 9053, KNK 1053(сухие) — трехфазные в цилиндрическом корпусе.
  • KNK 9103 — трехфазные в призматическом корпусе.

В процессе эксплуатации конденсаторных установок компенсации реактивной мощности при регулировании ступеней конденсаторные батареи подвергаются частым переключениям. В отличие от других видов электрооборудования, при коммутации конденсаторных батарей возникает большой пусковой ток, значительно (до 250 раз) превышающий номинальное значение.

В связи с этим, для коммутации конденсаторов необходимо использовать специальные контакторы. В отличие от обычных контакторов, контакторы CEM25C, CEM32C, CEM50C, CEM65C производства компании «ЭТИ электроэлемент» снабжены дополнительной контактной группой, установленной параллельно основной. К вспомогательным контактам, с двух сторон, последовательно подключены съемные токоограничивающие элементы, состоящие из нескольких витков проводника с большим удельным сопротивлением. При коммутации обе группы контактов приводятся в действие одновременно, но из-за меньшего расстояния, лимитируемого упором, вспомогательные контакты замыкаются на несколько миллисекунд раньше основных и пусковой ток протекает через токоограничивающие элементы, таким образом ограничивая ток конденсаторной батареи. Размыкаются они только после уверенного замыкания основных силовых контактов. Это предотвращает возникновение бросков, которые в свою очередь могут привести к повреждению (свариванию) силовой контактной группы и негативно повлиять на срок службы конденсатора. Ограничение пускового тока позволяет также избежать просадок напряжения во время переходных процессов. Контактная группа пускателей устойчива к свариванию при пиковых пусковых токах до 250 кА. Все контакторы этой серии снабжены нормально разомкнутыми вспомогательными контактами.

По материалам филиала АО «Эти электроэлемент» (Словения)

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.