Особенности коммутации конденсаторов УКРМ тиристорными коммутаторами (часть 1)

Опубликовано: 19 марта 2015 г. в 12:26, 123 просмотраКомментировать

Коммутаторы называются «тиристорными», потому что в качестве ключа в них используются полупроводниковые управляемые диоды — тиристоры. Особенность этих приборов в том, что они во включённом состоянии проводят электрический ток только в одном направлении.

Для коммутации переменного тока применяют два, включённых встречно-параллельно тиристора. Один пропускает ток при положительной полуволне сетевого напряжения, второй — при отрицательной. Вторая особенность тиристоров в том, что включить его можно в любой момент времени, но выключаются они только при снижении тока, практически до нулевого значения, т.е. в конце каждого полупериода сетевого напряжения. В начале каждого последующего полупериода его снова надо включать. В паре со специальной схемой управления, включающей тиристор в момент, когда напряжение на нём практически равно нулю (zero crossing), тиристор можно считать почти «идеальным» для коммутации переменного тока. В отличии от электромеханического контактора, тиристорный ключ имеет целый ряд серьёзных преимуществ для коммутации конденсаторов в УКРМ:

  1. Включение тиристора происходит только при совпадении сетевого напряжения и напряжения на конденсаторе, т.е. при нулевом токе через конденсатор.
  2. Полное отсутствие искрения и дугообразования при коммутации.
  3. Неограниченный ресурс по числу коммутаций.
  4. Большое быстродействие. Время включения трёхфазного коммутатора составляет менее 5 миллисекунд, что позволяет создавать УКРМ с динамической компенсацией реактивной мощности в режиме реального времени.

Но полностью заменить электромеханические контакторы тиристоры, пока не могут. Им присущи несколько серьёзных недостатков:

  1. Рассеиваемая мощность. На каждом тиристорном ключе падает напряжение, примерно 1, 1-1, 3 в. Это приводит к выделению на нём 1, 1-1, 3 Вт тепловой мощности на каждый ампер коммутируемого тока.
  2. Как следствие, увеличенные размеры. Для обеспечения нормального теплового режима работы, тиристоры устанавливаются на специальные охладители с естественным или принудительным охлаждением.
  3. Пока, к сожалению, тиристорные коммутаторы значительно дороже электромеханических контакторов.

Сравнение функциональных возможностей и особенностей эксплуатации тиристорных коммутаторов, представленных на рынке России

На российском рынке сегодня представлены тиристорные коммутаторы нескольких фирм-производителей, принципиально отличающихся количеством коммутируемых фаз (2 или 3) и конструкцией ключа. Большая часть производителей применяет в своих коммутаторах более дешёвые диодно-тиристорные ключи, состоящие из включённых встречно-параллельно неуправляемого диода и управляемого тиристора.

Рис. 1

Эквивалентная схема полупроводникового ключа, выполненного из встречно-параллельно включённых диода и тиристора.

В выключенном состоянии такой ключ представляет собой однополупериодный выпрямитель при этом на выходе коммутатора присутствует постоянное напряжение минус 534 В (при сетевом 380В). Это накладывает некоторые ограничения (см. ниже), но не мешает нормальной коммутации конденсаторов в УКРМ.

В остальных случаях применяются тиристорно-тиристорные ключи, состоящие из двух включённых встречно-параллельно тиристоров.

Рис. 2

Эквивалентная схема полупроводникового ключа, выполненного из встречно-параллельно включённых тиристоров.

Такой ключ на переменном токе, практически, эквивалентен механическому ключу и не накладывает никаких ограничений на коммутацию и работу конденсаторов в УКРМ. Благодаря своей относительной дешевизне, в России наиболее распространены двухфазные коммутаторы с диодно-тиристроными ключами.

На рисунке 3 представлена схема подключения такого коммутатора. Конденсаторы могут быть подключены, как «треугольником», так и «звездой».

Рис. 3

Коммутатор с двухфазной коммутацией двумя полупроводниковыми ключами, состоящими из встречно-параллельно включённых диода и тиристора.

Достоинства:

  • Простота конструкции, относительная дешевизна, так как коммутируются только две фазы.
  • Меньшая, чем у трёхканальных коммутаторов мощность потерь (тепловыделение).

Недостатки:

  • В выключенном состоянии коммутатора напряжение на конденсаторе С2 равно нулю, на конденсаторах С1 и С3 присутствует опасное для жизни персонала напряжение минус 534 В (при сетевом 380В).
  • Из-за наличия постоянного напряжения на выходе коммутатора нельзя использовать разрядные дроссели.
  • Разрядные резисторы надо выбирать исходя из воздействия на них постоянного высокого напряжения (Ur= Uлин*1.41).
  • В выключенном состоянии ступени, на резисторах выделяется мощность: P=U²r/R=(Uлин*1.41)²/R, во включённом состоянии: - P=Uлин²/R, т.е. в 2 раза меньше.
  • Из известных автору, по этой схеме выпускаются линейки коммутаторов:
  • BEL-TS H2 мощностью от 25, 50, 75, 100 и 300 квар ф. Beluk (Германия).
  • DSTM3 мощностью 30, 50 и 100 квар ф. Lovato (Италия).
  • TSM-LC мощностью 10, 25, 50, 200 квар и TSM-HV мощностью 50 квар ф. Epcos (Германия).

Рис. 4

Коммутатор с трёхфазной коммутацией тремя полупроводниковыми ключами, состоящими из встречно-параллельно включённых диода и тиристора.

Достоинства:

  • В выключенном состоянии коммутатора напряжение на конденсаторах С1, С2 и С3 равно нулю.
  • Можно использовать разрядные дроссели.
  • Разрядные резисторы выбираются исходя из воздействия на них только линейного сетевого напряжения (Ur= Uлин).

Недостатки:

  • Дороже, так как коммутируются три фазы.
  • Мощность потерь (тепловыделение) в 1.5 раза больше, чем у двухканальных коммутаторов.
  • В выключенном состоянии коммутатора на всех выходных клеммах коммутатора присутствует опасное для жизни персонала средневыпрямленное напряжение минус 260В (относительно нулевого провода).
  • По этой схеме выпускаются:Линейка коммутаторов CTU-02-400, мощностью от 10 до 72 квар ф. BMR (Чехия).

Рис. 5

Коммутатор с двухфазной коммутацией двумя полупроводниковыми ключами, состоящими из встречно-параллельно включённых тиристоров.

Достоинства:

  • Простота, относительная дешевизна.
  • Меньшая, чем у трёхканальных коммутаторов мощность потерь (тепловыделение).
  • Можно использовать разрядные дроссели.
  • Разрядные резисторы выбираются исходя из воздействия на них линейного сетевого напряжения (Ur= Uлин).
  • В выключенном состоянии после разряда, напряжение на конденсаторах С1, С2 и С3 равно нулю.

Недостатки:

В выключенном состоянии коммутатора на выходных клеммах коммутатора присутствует фазное напряжение 220В (относительно нулевого провода).

По этой схеме выпускается линейка коммутаторов МТК-2 мощностью от 15 до 120 квар, ф. МЕАНДР (СПб, Россия)

Рис. 6

Коммутатор с двухфазной коммутацией двумя полупроводниковыми ключами, состоящими из встречно-параллельно включённых тиристоров.

Достоинства:

  • В выключенном состоянии коммутатора на всех выходных клеммах коммутатора напряжения нет, напряжение на конденсаторах С1, С2 и С3 равно нулю (при разряженных конденсаторах).
  • Можно использовать разрядные дроссели.
  • Разрядные резисторы выбираются исходя из воздействия на них линейного сетевого напряжения (Ur= Uлин).

Недостатки:

  • Дороже, так как коммутируются три фазы.
  • Мощность потерь (тепловыделение).В 1.5 раза больше, чем у двухканальных коммутаторов.

По этой схеме выпускается линейка коммутаторов МТК-3 мощностью от 15 до 120 квар, ф. МЕАНДР (СПб, Россия)

Рис. 7

Коммутатор с трёхфазной коммутацией тремя полупроводниковыми ключами, состоящими из встречно-параллельно включённых тиристоров включённых по схеме "разорванный треугольник".

Достоинства:

  • Эта схема позволяет достичь максимально возможной скорости коммутации ступеней (до 25 раз в секунду), так как для включения тиристоров, имеющих сему детектирования нуля («Zero Crossing») условия включения тиристоров выполняются всегда, независимо от напряжения на конденсаторах.
  • В выключенном состоянии коммутатора напряжения на конденсаторах С1, С2 и С3 равно нулю (при разряженных конденсаторах).
  • Разрядные резисторы выбираются исходя из воздействия на них линейного сетевого напряжения (Ur= Uлин).
  • Ток через тиристоры в 1, 73 раза меньше, чем в других схемах.

Недостатки:

  • Дороже, так как коммутируются три фазы.
  • Работает только с однофазными конденсаторами.
  • Более сложный монтаж.
  • Мощность потерь (тепловыделение).В 1.5 раза больше, чем у двухканальных коммутаторов.

По этой схеме могут быть подключены:

  • все коммутаторы МТК-3 ф. МЕАНДР (СПб, Россия)
  • коммутаторы BEL-TS мощностью 50, 100 и 300 квар ф. Beluk (Германия).
  • Линейка коммутаторов BEL-TS мощностью 50, 100 и 300 квар ф. Beluk (Германия).

Рис. 8

Коммутатор с трёхфазной коммутацией тремя полупроводниковыми ключами, состоящими из встречно-параллельно включённых тиристоров, включённых по схеме "звезда с нейтралью".

Достоинства:

  • Эта схема позволяет достичь максимально возможной скорости коммутации ступеней (до 25 раз в секунду), так как для включения тиристоров, имеющих схему детектирования нуля («Zero Crossing»), условия включения тиристоров выполняются всегда, независимо от напряжения на конденсаторах.
  • В выключенном состоянии коммутатора напряжения на конденсаторах С1, С2 и С3 равно нулю (при разряженных конденсаторах).
  • Разрядные резисторы выбираются исходя из воздействия на них фазного сетевого напряжения (Ur= Uлин).
  • Позволяет использовать коммутаторы на 400В в сети с линейным напряжением 690В.

Недостатки:

  • Дороже, так как коммутируются три фазы.
  • Работает только с однофазными конденсаторами.
  • Мощность потерь (тепловыделение) в 1.5 раза больше, чем у двухканальных коммутаторов. По этой схеме могут быть подключены коммутаторы;
  • МТК-3 ф. МЕАНДР (СПб, Россия).
  • TSM-HV50 мощностью 50 квар ф. Epcos (Германия).

Конец первой части.

Литература:

  1. Шишкин С.А. «Тиристорные контакторы для коммутации низковольтной емкостной нагрузки», Силовая электроника, №2, 2005.
  2. «Тиристорные коммутаторы КАТКА и основные проблемы их применения в системах компенсации», Milan Bleha, KMB systems, s.r.o.
  3. «KATKA 20/80 — Operating Manual»
  4. «Discharge resistor EW-22», EPCOS AG, 2010, B44066T0022E400.
  5. «Discharge Reactor», EPCOS AG, 2004, B44066E9900S001.
  6. «Installation and maintenance instructions for thyristor modules TSM-HV series» EPCOS AG, 2011.
  7. «CTU-02 Thyristor switching module for fast PF compensation», BMR,
  8. «CTU-03 Thyristor switching module for fast PF compensation», BMR,
  9. «Thyristor switch for reactive current compensation. User manual» KBR, EDEBDA0200-2112-1_EN.
  10. Power Factor Correction. Product Profile 2005. Published by Epcos AG. Ordering No EPC: 26013-7600. Germany. 2005.
  11. Power Factor Correction. Product Profile 2003/2004. Published by Epcos AG. Ordering No EPC: 26011-7600. Germany. 2003.
  12. Reactive Power Controller Prophi. Operating instructions. Janitza electronics GmbH. Dok Nr 1.020.009.a Serie II. Germany. 2003.
  13. Thyristor Module TSM-Series. Published by Epcos AG. Germany. July 2006

Об авторе
Автор статьи — главный конструктор
ЗАО «МЕАНДР»
Е. Н. Васин

Информация о компании

Электроэнергетика, НПК ООО
НПК «Электроэнергетика» предлагает Вам: — Устройство оптоволоконной дуговой защиты «ОВОД-МД» , «ОВОД-Л» , «Проэл-мини» для ячеек КРУ и КСО ; — Реле дуговой защиты типа РДЗ ; — Реле напряжения, времени, тока, твердотельные реле, концевые выключатели, устройства защиты, ограничители мощности, счетчики , датчики, фотореле, термореле, термисторная защита, таймеры, стабилизаторы напряжения и оборудование для технологических процессов и др.; Надеемся на плодотворное сотрудничество! Дополнительную информацию Вы можете получить у наших специалистов!

Контакты:

Ф.И.О. Смолич Елена Геннадиевна  нет отзывов
Должность: Директор
Компания: НПК «Электроэнергетика»
Страна:  Россия
Телефон: +7 (495) 507-44-08, 517-56-60
Сообщите, что нашли информацию на сайте «Элек.ру»
Web: http://www.electroenergetica.ru/
Зарегистрирована: 8 апреля 2005 г.
Последний раз была на сайте 6 часов назад
  Отправить сообщение

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.