Особенности схем подключения нагрузок к тиристорному регулятору

Опубликовано: 13 мая 2013 г. в 14:25, 753 просмотраКомментировать

Наиболее часто на практике используется четыре схемы подключения нагрузок к тиристорному регулятору: звезда, треугольник, звезда с рабочей нейтралью и разомкнутый треугольник.

Схемы подключения звезда и треугольник приведены на рисунке 1.

Тиристорный регулятор
Рисунок 1. Подключение нагрузки к трехфазному тиристорному регулятору по схемам звезда и треугольник

Основное достоинство этих двух схем — простота и минимальное количество силового провода, за счет чего они и получили наиболее широкое распространение. При соединении нагрузки звездой максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению Uф, а при соединении треугольником — линейному Uл. Соответственно, звездой соединяют нагрузку, рассчитанную на напряжение 220 В, а треугольником — 380 В.

Кривая тока, протекающего по фазному проводу изображена на рисунке 2.

Тиристорный регулятор
Рисунок 2. Кривая тока в фазах при соединении звездой или треугольником, активная нагрузка

Однако у простоты схемы есть обратная сторона медали — напряжения на нагрузочных сопротивлениях распределяются поровну только при условии строго равенства фазных напряжения (Uа = Ub = Uс) и равенства сопротивлений нагрузок (Ra = Rb = Rc или Rab = Rbc = Rca). Как правило, на практике это условие почти никогда не выполняется и возникает небаланс напряжений: на разных сопротивления нагрузки при полностью включенных тиристорах устанавливаются неравные напряжения, например, на одном сопротивлении 210 В, на другом 215 В, на третьем 230 В.

В большинстве своем эти небалансы невелики: разброс по напряжению невелик и составляет не больше 4-8%, что вполне допустимо. Но иногда при неудачном соотношении параметров — сильном «перекосе» фаз с одновременно неравными сопротивлениями нагрузки — напряжения могут распределиться с большим разбросом, например 190, 220 и 250 В. Это ведет к неравномерному износу ТЭНов и преждевременному выгоранию одного из них.

Довольно часто бывает, что в одной из фаз постоянно выгорает ТЭН неизвестно от чего. Обычно это является следствием выше описанного явления.

В схемах подключения звезда с рабочей нейтралью и разомкнутый треугольник (рисунок 3) это явление проявляется гораздо меньшей степени.

Тиристорный регулятор
Рисунок 3. Подключение нагрузок по схемам звезда с рабочей нейтралью и разомкнутый треугольник

При подключении нагрузки по схеме звезда с нулем максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению сети, при этом ток каждой фазы определяется лишь напряжением фазы и сопротивлением нагрузочного резистора, включенного в эту фазу, и не зависит напряжений других фаз и от сопротивлений остальных нагрузочных сопротивлений, то есть Ia = Ua / Ra, Ib = Ub / Rb, Ic = Uc / Rc.

Другое важное свойство схемы — возможность выравнивания токов, напряжений и мощностей на нагрузочных сопротивлениях в случае «перекоса» фаз питающей сети. Например, тиристорный регулятор тока ТРМ-С может автоматически корректировать напряжение на нагрузке таким образом, чтобы на каждом сопротивлении нагрузки выделялась равная мощность. Это способствует продлению срока службы ТЭНов, а также энергосбережению – за счет устранения перекосов по фазам достигается дополнительная экономия электроэнергии 1-3%.

Еще один плюс этой схемы — это меньший уровень излучаемых электромагнитных помех.

Все выше сказанное также верно и для схемы разомкнутого треугольника, с той лишь разницей, что максимальное напряжение на нагрузочных сопротивлениях равно линейному, а ток нагрузки определяется линейным напряжением Iab = Uab / Rab, Ibc = Ubc / Rbc, Ica = Uca / Rca.

Недостатков у схемы звезда с нейтралью два. Первый — это необходимость подключения нулевого провода, что на практике иногда бывает затруднительно. Например, у нагревательного аппарата может быть сделано три вывода для подключения фазных проводов, а общая точка звезды — внутри аппарата и недоступна для подключения. В этом случае реализовать подключение по схемы звезды с нейтралью невозможно.

Второй недостаток — это протекание тока через нейтраль при фазо-импульсном управлении даже при полностью равных сопротивлениях нагрузки и фазных напряжениях, что проиллюстрировано на рисунке 4: в верхней его части изображены кривые токов, протекающие по фазам А, В и С, а внизу — ток в нулевом проводе.

Тиристорный регулятор
Рисунок 4. Протекание тока через нулевой проводник

При этом величина тока в нулевом проводе может быть в 1,5-2 раза больше чем ток в фазах. Это приводит к необходимости прокладки нулевого проводника увеличенным сечением, что, разумеется, увеличивает и стоимость кабельных линий. Незнание или недооценка же этого явления приводит к постепенному выходу из строя нейтрального провода.

Это иногда вызывает удивление: казалось бы, напряжения фаз равные, сопротивления фаз равные, откуда ток в нуле?! Но объясняется это явление просто. Дело в том, что при фазо-импульсном управлении тиристорами форма тока становится не синусоидальной и поэтому не происходит полной компенсации токов в нулевом проводе, как при питании трехфазной нагрузки синусоидальным током.

Отсюда вывод — чтобы ток в нулевом проводе был минимальный необходимо использовать управление пропуском периодов. В этом случае токи фаз будут синусоидальны, а значит ток в нейтрали будет определятся лишь небалансом напряжений фаз и сопротивлений. Практически, это приводит к тому, что ток в нуле становится не больше 10% от тока фазы.

Напоследок, рассмотрим схему соединения разомкнутый треугольник. У схемы есть замечательное свойство — тиристоры при таком соединении коммутируют не фазные токи, а линейные, которые меньше в 1,73 раза. Например, если ток фазы составляет 650 А, то токи в линейных проводах составляют Iл = 650 / 1,73 = 380 А. По сравнению со схемой соединения обычным треугольником, это дает возможность приобретать тиристорный регулятор на меньший номинальный ток, который соответственно дешевле и меньше в габаритах. Это показано на рисунке 5. В верхней части рисунка нагрузка соединена треугольником, при этом через тиристоры протекают токи 650 А, а значит необходимо приобретение тиристорного регулятора номинальным током не менее 700-800 А. А в нижней части нагрузка соединена разомкнутым треугольником, при этом по фазам протекает такой же ток 650 А, но поскольку тиристоры коммутируют ток 380 А, то достаточно иметь тиристорный регулятор с номинальным током 400-500 А, что в 1,5-2 раза дешевле.

Тиристорный регулятор
Рисунок 5. Сравнение схем треугольник и разомкнутый треугольник

Жаль, но несмотря на такое преимущество, эта схема не получила большого распространения. Почему? Первое, как и для звезды с нейтралью, для реализации такой схемы подключения должны быть доступны оба конца выводов нагрузок, что опять же не всегда возможно. Например, у трансформатора, первичная обмотка которого соединена треугольником чаще всего выведена только три конца, а вторые три спрятаны внутри. Второе – это увеличенная стоимость кабельного хозяйства — посмотрите внимательно на рисунок 5: при соединении разомкнутым треугольником требуется дополнительный силовой кабель («обратный» кабель от нагрузки). Учитывая высокую стоимость кабелей, можно сказать, что такая схема целессобразно лишь при небольшой длине кабельных линий до 20-30 метров при прокладке медным кабелем и до 50-70 метров при прокладке алюминиевым. При большой длине экономия, полученная от приобретения более дешевого регулятора обнуляется за счет более высокой стоимости кабельного хозяйства.

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.