Свойства монолитного поликарбоната для светотехники

Опубликовано: 3 апреля 2015 г. в 10:00, 69 просмотровКомментировать

Листовой монолитный (сплошной) поликарбонат (ПК) является самым прочным из всех прозрачных материалов, существующих на мировом рынке и производящихся в промышленных масштабах. Уникальность эксплуатационных характеристик обеспечивает востребованность листового ПК в таких областях как автомобилестроение, строительство, военная техника, производство спортивного снаряжения, средств безопасности и антивандальных конструкций и, несомненно, рекламная индустрия.

Сырьевой поликарбонат (в виде гранул) представляет собой продукт поликонденсации дифенилолпропана и хлорангидрида угольной кислоты (фосгена) или диметилового эфира угольной кислоты (ДМУК). Использование ДМУК дает возможность перевести технологический процесс получения ПК из жидкой фазы в расплав, избавиться от экологически опасного фосгена и значительно увеличить объемы производства. Этот передовой метод уже используется на одном из заводов компании «General Electric Plastics» в Испании. Увеличение объема производства гранулированного ПК влечет за собой увеличение объема производства листового материала, что благотворно влияет на конъюнктуру мирового рынка и позволяет удовлетворить все повышающийся спрос (в том числе и в России) на прозрачные, полупрозрачные и цветные пластики.

Основными производителями многочисленных марок ПК являются компании: General Electric Plastics (США, торговая марка LEXAN), Dow Plastics (США, CALIBRE), Bayer (Германия, MAKROLON), Teijin Chemical (Япония, PANLITE), Sam Yang (Южная Корея, TRIREX). Из этих исходных материалов методами экструзии и соэкструзии (нанесение УФ-защитного слоя) изготавливаются все листовые ПК в странах Америки и Европы, а также в России.

В нашей стране листовой ПК представлен следующими популярными марками: Barlo PC, Barlo PC UVP с УФ-защитой (Бельгия), Makrolon (Германия), Lexan (Голландия, Австрия), Politec (Италия), Paltuf и Palsan (Израиль), Axxis-PC и Axxis-Sunlife с УФ-защитой (Бельгия), поликарбонат монолитный (Россия, г.Дзержинск) и другими.

Так как все листовые ПК изготавливаются практически из одинаковых по характеристикам марок сырьевого гранулята (у всех компаний-производителей ПК существует специальные экструзионные марки для производства монолитных и сотовых листов), основные свойства материалов разных производителей мало, чем отличаются друг от друга. В таблице 1 приведены физико-механические и эксплуатационные характеристики некоторых из них.

Таблица 1. Технические характеристики монолитного листового поликарбоната

Характеристика

Метод

Ед.изм.

Значения

Barlo PC, PC UVP

Paltuf, Palsan

Axxis Sunlife

Плотность

ISO 1183

г/см³

1.2

1.18

1.2

Светопропускание

ТЗ

%

86

89

86

Коэффициент преломления

DIN 5036

ND20

1.585

н/д

1.585

Модуль упругости при изгибе

ISO 178

МПа

н/д

2600

н/д

Предел прочности при изгибе

ISO 178

МПа

> 95

> 90

> 95

Модуль упругости при разрыве

ISO 527

МПа

2200

2000

2200

Предел прочности при разрыве

ISO 527

МПа

60

65

60

Удлинение при разрыве

ISO 527

%

80

90

100

Ударная вязкость по Шарпи образца с надрезом

ISO 179

кДж/м²

> 40

н/д

> 30

Ударная вязкость по Шарпи образца без надреза

ISO 179

кДж/м²

без разр.

без разр.

без разр.

Ударная вязкость по Изоду образца с надрезом

ASTM D 256

Дж/м

н/д

800

600-800

Теплостойкость по методу Vicat

ISO 306

°С

145

150

145

Температура прогиба (А)

ISO R 75

°С

135

130

135-140

Коэфф. линейного термического расширения

DIN 53328

K-1

10-5

6.5

6.5

6.5

Теплопроводность

DIN 52612

Вт/м.К

0.2

н/д

0.21

Удельная теплоемкость

D-2766

Дж/г.К

1.17

1.26

1.17

Температура разложения

°С

> 280

н/д

> 280

Мин.температура использования

°С

-60

-75

-100

Макс.температура использования

°С

+130

+120

+130

Макс.температура длительной тепловой нагрузки

°С

+115

+100

+115

Температура термоформования

°С

180-210

н/д

180-200

Температура формы

°С

55-90

н/д

55-90

Диэлектрич. постоянная, 50 Гц

DIN 53483

3.0

н/д

3.0

Электрическая прочность

DIN 53481

кВ/мм

> 30

н/д

> 30

Объемное сопротивление

DIN 53482

Ом.см

1015

н/д

1015

Поверхностное сопротивление

DIN 53482

Ом

1015

н/д

1015

Тангенс угла диэлектрич.потерь

DIN 53483

Гц

8x10-4

н/д

9.2х10-4

Огнестойкость

UL-94

DIN 4102

Класс

Класс

н/д

н/д

V-1

B1

Анализ данных таблицы 1 позволяет сделать вывод, что листовой ПК обладает уникально высокой ударопрочностью. В графе значений ударной вязкости образца без надреза указано: «без разрушений» - это означает, что образец листового ПК невозможно разрушить лабораторными методами. Если соотнести данные показателя ударной вязкости образца ПК с соответствующими показателями для других листовых материалов, например, для оргстекла 14-17 (без надреза) и 4-5 (с надрезом), для полисторола 5-6 (без надреза) и 1-2 (с надрезом), то можно приблизительно оценить величину этой физической характеристики в 900-1100 кДж/м² (без надреза). Эта величина иллюстрирует экстремальную ударопрочность материала. И действительно, листовой ПК невозможно разбить ни молотом, ни двухпудовой гирей. Даже, если в силу каких-либо внешних обстоятельств ударопрочность уменьшится в 3-5 раз, указанная физическая величина будет иметь настолько большое значение (200-300), что не возникнет ощутимого снижения прочности конструкционного элемента. Поэтому этот материал для использования в антивандальных строительных и рекламных конструкциях, несомненно, предпочтителен.

Еще одна особенность листового ПК - высокая устойчивость к низким и высоким температурам. Диапазон температур уверенного использования очень широк - от —50°С до +150°С. Поэтому поликарбонат безоговорочно может применяться в любых самых сложных климатических условиях. В интерьере этот полимер также находит применение в случае эксплуатации изделий в режиме повышенных температур (например, в световых коробах с установленными в качестве световых источников лампами накаливания с избыточной теплоотдачей).

Для ПК характерны также высокая огнестойкость, чрезвычайно низкий уровень дымообразования при горении в условиях даже развитого пожара и низкая токсичность продуктов разложения, что является очень важными факторами эксплуатационной безопасности строительного объекта. Значение Кислородного индекса (процентное содержание кислорода в окружающей атмосфере, при которой материал начинает поддерживать устойчивое горение) составляет 28-30%. Это значит, что в воздушной среде (21% кислорода) поликарбонат не поддерживает горение и в соответствии с классификацией относится к группе самозатухающих полимеров. Совокупность всех этих качеств ставит листовой ПК в ряд материалов с наилучшими показателями противопожарной безопасности, причем стоит заметить, что эти свойства характерны для ПК без каких бы то ни было специальных антипирирующих добавок.

Поликарбонат обладает высокой стойкостью в отношении многих химически активных сред. Он не подвержен воздействию большинства неорганических и органических кислот, окислительных и восстановительных агентов, кислотных и основных солей, алифатических углеводородов, спиртов, моющих средств, жиров и смазочных масел. Химическая стойкость поликарбоната зависит от концентрации химикатов и от температуры окружающей среды при воздействии. После длительного нахождения в воде при температуре выше 60°С, например, ПК реагирует на контакт с некоторыми растворителями, водными и спиртовыми растворами щелочей, газообразным аммиаком и аминами.

Ниже представлены данные химической устойчивости ПК к некоторым веществам

+ стойкий - не стойкий

Cтойкость

Стойкость

Стойкость

Уксусная кислота +

Ацетон-

Щелочные растворы-

Аммиак -

Бензол-

Борная кислота+

Бутилацетат -

Бутиловый спирт+

Перманганат калия, 10%+

Диэтиловый спирт-

Этиловый спирт+

Гексан+

Соляная к-та концентр.-

Соляная к-та, 20%+

Перекись водорода, 30%+

Метиловый спирт-

Метиловый спирт-

Метиленхлорид-

Поваренная соль+

Пропан+

Бензин+

Как и большинство других прозрачных полимерных материалов, листовой ПК служит прекрасным заменителем силикатного стекла и может использоваться при остеклении, особенно защитном. При этом основные эксплуатационные показатели у листового ПК (вес, тепло- и звукоизоляция) значительно лучше, чем у стекла. В таблице 2 приведены сравнительные данные из расчета 1 м² для разных толщин листового ПК и стекла. Иллюстрируются такие необходимые качества как теплоизоляция, характеризующаяся коэффициентом теплопередачи (К), и звукоизоляция, выраженная значением падения силы звука (в децибелах) при прохождении через остекление.

Таблица 2. Сравнительные характеристики листового ПК и стекла

Толщина

листа, мм

Вес, кг/м²

К, Вт/м²К

Звукоизоляция,

Дб

ПК

Стекло

ПК

Стекло

ПК

Стекло

3

3.6

7.34

5.49

5.87

26

28

4

4.8

9.4

5.35

5.84

27

29

5

6.0

12.24

5.21

5.80

28

30

6

7.2

14.68

5.09

5.77

29

31

8

9.6

19.60

4.89

5.72

31

32

10

12.0

24.48

4.68

5.67

32

33

12

14.4

29.38

4.35

5.58

34

34

Из таблицы видно, что для всех толщин коэффициент теплопередачи К в случае ПК ниже, чем у стекла. Таким образом, потери тепла в помещении и проникновение тепла или холода извне через ограждающие конструкции в зданиях с поликарбонатным остеклением будут меньше, чем при использовании обычного стекла. Применение полимера вместо традиционного прозрачного материала позволяет в значительной степени снизить энергозатраты на отопление зимой и кондиционирование летом. В то же время звукозащитные свойства листового ПК и стекла практически одинаковы.

Существенным фактом, определяющим место размещения листов ПК (в помещении или на открытом воздухе) является защищенность листов от воздействия ультрафиолетового излучения. По своей природе ПК подвержен действию УФ-излучения. С течением времени это проявляется в виде желтизны и мутности, что, соответственно, ухудшает светопропускание, и в некоторой степени потерей прочностных качеств (но как отмечалось выше неощутимых с точки зрения эксплуатационных возможностей материала). Для того чтобы защитить листы ПК от воздействия солнечной радиации существует два принципиально разных технологических метода. Первый — введение уф-стабилизаторов в массу полимера, что позволяет достигать защитного эффекта по всей толщине листа. Второй способ — нанесение методом со-экструзии или лакированием специального защищающего слоя на одну или обе поверхности листа. Во втором случае при монтаже конструкции из листов ПК очень важно обращать к солнечной стороне именно УФ-защищенную поверхность. Производители листового поликарбоната при соблюдении технологических правил гарантируют уменьшение коэффициента светопропускания не более чем на 6% за 10 лет (DIN 5036).

Сравнительные данные по изменению коэффициента светопропускания и индекса желтизны для обычных и УФ-защищенных листов ПК были получены в результате экспериментов, в ходе которых материал облучался в течение ста часов светом ксеноновой лампы с интенсивностью аналогичной годовому солнечному воздействию в таких климатических зонах как Израиль или штат Аризона (США). Снижение значения коэффициента светопропускания при длительности облучения 2000 часов составляет для обычного ПК — до 91% — 87,7% и УФ-защищенного — до 89,5%. Увеличение индекса желтизны при тех же условиях составляет 0 — 9 для обычного ПК и 2,5 для листов с УФ-защитой. Эти данные подтверждают, что листовой ПК с УФ-защитой может длительное время использоваться вне помещений без видимых изменений.

ООО «Аксиома Cвета»

Информация о компании

АКСИОМА ЭЛЕКТРИКА, ООО
Философия качества — лидерство технологий. ООО «Аксиома Электрика» — это электротехнический бренд, объединяющий высокое качество оказания услуг и поставок надежной продукции. Бренд, который стремится сделать доступными для каждого человека самые современные изделия в освещении и электрике. Надежность оборудования и эффективность от его внедрения — девиз бренда. Мы рекомендуем только проверенные и эффективные решения в области энергосберегающего освещения. География реализованных проектов…

Контакты:

Ф.И.О. Иванов Олег  нет отзывов
Должность: Генеральный директор
Компания: ООО "Аксиома Электрика"
Страна:  Россия
Телефон: +7 495 504 73 82
Сообщите, что нашли информацию на сайте «Элек.ру»
Web: http://www.axiomaelectrika.ru/
Зарегистрирован: 18 апреля 2014 г.
Последний раз был на сайте 10 дней назад
  Отправить сообщение

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.