Тенденции в производстве танталовых конденсаторов компании EXXELIA FIRADEC

Опубликовано: 30 ноября 2015 г. в 16:20, 193 просмотраКомментировать

Каждая технология преследует свои собственные интересы и имеет свои слабые и сильные стороны. Тантал в электролитических конденсаторах занимает особую нишу.

Танталовые конденсаторы: в сердцевине технологий

Если рассматривать такие характеристики, как эквивалентное последовательное сопротивление (Equivalent Series Resistance, ESR) и токи утечки, то пленочные и керамические конденсаторы смотрятся явно лучше, чем танталовые или, например, алюминиевые (табл. 1). А если мы обратим внимание на срок службы и способность выдерживать жесткие условия внешней среды, то танталовые, пленочные и керамические конденсаторы имеют показатели гораздо выше, чем алюминиевые. Эта особенность привела к тому, что, например, алюминиевые конденсаторы запрещены ЕКА (Европейское космическое агентство) для использования в космической технике. С другой стороны, существует два параметра, по которым алюминиевые и танталовые (танталовые объемно-пористые) смотрятся гораздо привлекательнее, чем пленочные и керамические, а именно по таким параметрам, как удельная энергоемкость (плотность энергии на единицу объема) и относительная стоимость (€/Ф).

В самом деле, по этим двум параметрам танталовые конденсаторы (ТК) хоть и выглядят гораздо лучше, чем пленочные и керамические, все же они еще очень далеки от алюминиевых. И это ставит ТК в некоторое «промежуточное» положение среди упомянутых технологий.

Пути совершенствования

Поскольку такие параметры, как относительная стоимость и удельная энергоемкость, являются связанными между собой, то вполне логично, что потребитель остановит свой выбор именно на ТК, ибо он всегда хочет получить как можно больше, и это в полной мере относится к указанным параметрам. В итоге у потребителя появляется возможность миниатюризировать свои проекты, снизив, соответственно, их стоимость. А если обратить внимание на объемно-пористые ТК, то становится очевидным, что многие проекты могут быть реализованы с оптимальным соотношением этих специфических характеристик в конечных продуктах.

Если обратить внимание на двух крупных американских производителей, то обе компании используют своего рода гибридные технологии, позволяющее, например, получить емкость до 750 мкФ с рабочим напряжением 75 В в корпусе Т4 (типоразмер класса MIL) из типоразмеров CLR 79.

Компания Exxelia Firadec предпочла иной путь. В итоге значительный успех имело семейство конденсаторов ST79, номинальная емкость которых была ограничена 470 мкФ для рабочего напряжения 75 В. Эти конденсаторы были сертифицированы для использования в космической технике и включены в предпочтительный перечень элементов ЕКА–EPPL (ESA Prefered Part List, EPPL). Впрочем, это касается вовсе не оксидно-полупроводниковых танталовых конденсаторов. Чтобы стать потенциальным лидером в этом направлении, компании Exxelia Firadec необходимо было увеличить максимальное значение номинальной емкости конденсаторов, что и было достигнуто в случае с устройствами семейства WT83. Их номинальная емкость вдвое выше по сравнению с конденсаторами ST79, что делает их более конкурентно-способными. Сравнение этих новых конденсаторов с конкурентными продуктами показано на рис 1.

Рис. 2. Характеристики предлагаемых объемно-пористых ТК, выпускаемых компанией Exxelia Firadec

Серия ТК WT83 позволяет Exxelia Firadec практически на 30% повысить уровень номинальной емкости для нескольких рабочих напряжений. Кроме того, инновационные технологии должны позволить компании совершить еще один рывок в этом направлении в ближайшие три года, а также выпустить высокотемпературную версию рассмотренной серии высокоемкостных конденсаторов с рабочей температурой до +200 °C.

Соотношение емкость/рабочее напряжение изделий компании Exxelia Firadec представлено на рисунке 2.

Применение ТК для проектирования вторичных шин питания космических аппаратов

Общий источник питания (ИП) в космических аппаратах (КА), например спутниках, как правило, представляет собой мощный DC/DC-преобразователь с двумя шинами. Одна шина является первичной и обычно характеризуется высоким рабочим напряжением, а вторая является вторичной и рассчитана на более низкие напряжения (10–100 В). На этом вторичном уровне некоторые его особенности требуют применения конденсаторов, но наиболее важной функцией является фильтрация выходного напряжения — как основного, так и вторичного. Для реализации этой функции, поскольку алюминиевые конденсаторы для использования в космической технике из-за сброса давления и надежности запрещены, могут быть использованы только три технологии изготовления конденсаторов:

  • керамические;
  • пленочные;
  • танталовые (оксидно-полупроводниковые или объемно-пористые, в зависимости от имеющихся ограничений).

Керамические и пленочные конденсаторы имеют свои преимущества, такие как малое эквивалентное последовательное сопротивление ESR, возможность выдерживать обратное напряжение и безопасность при отказе.

Но, как уже было сказано, ТК имеют два основных преимущества, которые делают их основным и наилучшим решением во многих случаях: удельная энергоемкость (табл. 2) и относительная стоимость.

Для фильтрации выходного напряжения в большинстве случаев требуются конденсаторы большой емкости (например, в несколько десятков миллифарад). Таким образом, это означает, что необходимо использовать большое количество пленочных или керамических конденсаторов, которые будут занимать значительную площадь на печатной плате. В результате фильтрация выходного напряжения в этой конфигурации становится чересчур дорогой и громоздкой.

Большинство конструкторов при проектировании сталкивается с тем, что рабочее напряжение ТК не превышает 100 В для оксидно-полупроводниковых с твердым электро-литом и 150 В для объемно-пористых с жидким электролитом (рис. 3).

В 2014 г. компания Exxelia Firadec исследовала данную тему, и ее специалистам удалось найти выход из сложившейся ситуации. Чтобы получить, как минимум, те же характеристики конденсаторов, рассчитанных на рабочее напряжение в 150 В, но при более высоких напряжениях (пусть даже при определенных ограничениях в части условий эксплуатации), был использован весь наколенный годами опыт целого ряда подразделений Exxelia. Например, поставленная задача могла быть реализованной для более узкого диапазона рабочих температур, но с более высоким коэффициентом использования объема конденсатора. Все это, в итоге, привело к разработке нескольких новых конденсаторов в корпусах различных типоразмеров, которые соответствуют T3 и T4 по стандартам MIL (рис. 4, табл. 3).

Емкость рассматриваемых конденсаторов:

  • 33 мкФ 160 В в корпусе C;
  • 47 мкФ 160 В в корпусе D;
  • 82 мкФ 160 и 170 В в корпусе D.

Учитывая необходимый запас по рабочему напряжению для КА, это позволяет проектировщикам использовать такие конденсаторы до рабочего напряжения в 100 В (100/0,6 = 168,5 В).

Рис. 5. Типовая блок-схема DC/DC-преобразователя

Доказательство длительного срока службы новых конденсаторов

Приведенные выше характеристики — это лишь первый шаг на пути к достижению максимально высокой надежности. В данном случае проведенные испытания показали отличную стабильность конденсаторов после 1000 ч наработки в ходе испытаний на срок службы (табл. 4).

Кроме того, есть еще интересные теоретические расчеты. В реальной практике мы используем формулы, которые были разработаны для стандартов MIL, их также иногда использует и Европейский координационный комитет по компонентам для КА — ESCC. Таким образом, у нас есть возможность вычислить интенсивность отказов:

FR = 3 × πT × πV × πC × πE × πq × 10 -9/ч,

где коэффициенты имеют следующий смысл: πT — влияние температуры; πV — влияние напряжения; πC— емкость конденсатора; πE — окружающие условия эксплуатации; πq— квалификационный коэффициент, класс элемента.

Зададим максимальную температуру в +70 °С, что является обычным для КА. Тогда:

πT = exp (1,8 × (T/Tmax)²) = exp (1,8) = 6,05;

πV = exp (Up/Ur)² = exp (0,6)² = 1,43;

πC = 1,2, что соответствует конденсатору емкостью в 82 мкФ; πq= 2, поскольку этот элемент не сертифицирован как изделия для КА (0,5 — если бы был сертифицирован); πE= 0,5 для орбитального КА (спутника) или 20 для космического ракетоносителя.

Отсюда имеем:

  • FR = 31 × 10-9/ч для орбитального спутника;
  • FR = 12,4 × 10-7/ч для космического ракетоносителя.

Это соответствует предполагаемому сроку службы в 32 300 тыс. ч для орбитального космического аппарата и 806 000 ч для космического ракетоносителя.

Конечно, эти цифры являются сугубо теоретическими. Такие большие сроки службы достаточно трудно доказать экспериментально, но все же эти результаты являются достаточно информативными для оценки поведения описываемых изделий в устройствах космического назначения.

Такие же, как и для всех иных сертифицированных для использования в космической промышленности продуктов, Exxelia Firadec может применить к предлагаемым конденсаторам 100%-й контроль по правилам Европейского космического агентства (ЕКА) и соответствующие приемо-сдаточные испытания (ПСИ), в том числе по программе, включающей различные проверки и тесты (схема на рис. 6).

Таким образом, благодаря новым высоковольтным объемно-пористым танталовым конденсаторам WT82 компании Exxelia Firadec оборудование для космоса можно будет сделать менее габаритным и более дешевым.

Рис. 6. Схема приемо-сдаточных испытаний по ESCC (Общие технические условия № 3003)

Источник: Бенжамин Ронс (Benjamin Ronse), статья опубликована в журнале «Вестник Электроники» №2 2015

Контакты:

Ф.И.О. Блохина Екатерина  нет отзывов
Компания: «PT Electronics»
Страна:  Россия
Телефон: +7 (812) 324-63-50
Сообщите, что нашли информацию на сайте «Элек.ру»
Web: http://ptelectronics.ru/
Зарегистрирована: 11 августа 2014 г.
Последний раз была на сайте 21 день назад
  Отправить сообщение

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.