Тепловое сопротивление выпрямителей: трюки маркетологов и истинное положение

Опубликовано: 20 октября 2009 г. в 16:04, 307 просмотров Комментировать

Статья написана сотрудниками компании Diotec Semiconductor (Германия) по результатам маркетинговых исследований российского рынка, в частности проанализировано применения диодов.

Свойства полупроводниковых выпрямителей определяются тремя основными предельными характеристиками:

  • максимальное напряжение пробоя;
  • максимальный пиковый ток;
  • максимальная температура кристалла.

Важнейшим ограничивающим параметром для выпрямителей является не максимальное значение выпрямленного тока (Ifav), а именно предельная температура кристалла (Tjmax). Обе характеристики связаны между собой через рассеиваемую мощность и величину теплового сопротивления. Надо помнить, что превышение допустимой температуры чипа может привести к выходу элемента из строя.

Интересно отметить, что маркетологи фирм-производителей предпринимают постоянные попытки сделать техническую документацию более привлекательной для пользователей. Они завышают значение Ifav, пытаясь таким образом представить свои диоды более мощными, чем у конкурентов. Фокус в данном случае состоит в попытке определить параметры выпрямителя в нереальных условиях эксплуатации или при тепловом сопротивлении конструкции, не реализуемом на практике. Типичным ухищрением является нормирование характеристик чипа для случая его установки на гибридную подложку.

Однако законы физики распространяются на всех производителей диодов. Ключевым для данного случая является следующее выражение, определяющее перегрев кристалла диода в зависимости от рассеиваемой мощности и теплового сопротивления:

Tjmax = Pd x Rthja = Vf x Ifav x Rthja

Данная формула является приближенной, поскольку в ней не учитываются потери, вызванные токами утечки, динамические потери при обратном восстановлении и температурная зависимость прямого падения напряжения Vf.

Чтобы получить абсолютно корректный результат, необходимо сумму всех имеющихся потерь умножить на величину теплового сопротивления. При сопоставлении характеристик выпрямителей не следует сравнивать справочные значения Ifav, в то время как сопоставление прямого падения напряжения Vf вполне корректно, поскольку это значение непосредственно связано с размером кристалла и, следовательно, с его мощностью.

Давайте взглянем на типовой график зависимости Vf от тока выпрямителя, приводимый в технических характеристиках. Это простое действие позволит вам сравнить размеры чипов в компонентах, которые вы собираетесь приобрести. Необходимо отметить, что данное утверждение не справедливо для быстрых диодов, поскольку для них параметр Vf зависит от количества легирующих материалов золота (Au) или платины (Pt), используемых для уменьшения времени обратного восстановления trr.

Некоторые производители определяют величину прямого тока Ifav при коэффициенте заполнения 50%, хотя промышленным стандартом является 100%. Это дает им очевидную возможность завышать нормы.

Из приведенного выше выражения для Tjmax видно, что снижение значения теплового сопротивления «кристалл — окружающая среда» Rth(j-a) позволяет увеличивать значение Ifav и этот трюк также широко применятся рядом производителей.

Кривая снижения значения среднего выпрямленного тока в зависимости от температуры для случая использования алюминиевой подложки, показанная на рисунке 1, является типичным примером подобной маркетинговой хитрости. Для конкурирующего прибора нормальные условия эксплуатации определяются для выпрямителя «установленного печатную плату из эпоксистеклопластика или стандартного материала FR4». В некоторых случаях параметры могут нормироваться для PCB других типов, однако, как правило, тепловое сопротивление при этом оказывается еще выше.

Кривая для «алюминиевой подложки» относится к случаю использования диода в гибридной схеме. Очевидно, что такая характеристика выглядит для пользователя более привлекательно, однако следует учесть, что она справедлива только для менее 1% применений! Тем не менее, некоторые производители диодов публикуют только такую кривую.

Технические характеристики, приводимые в документации Diotec, всегда нормированы из условия применения стандартных материалов PCB эпоксистеклопластик / FR4.

Другим способом корректного сравнения является использование условий измерения теплового сопротивления. В приведенном примере, являющемся достаточно типичным для промышленных применений, элемент монтируется методом пайки на омедненную контактную площадку размером 1,3 × 1,3 мм на плате из эпоксистеклопластика. Изменяя условия пайки или размер площадки, можно уменьшить тепловое сопротивление. С точки зрения разработчика это очень хорошо, поскольку снижение температуры чипа увеличивает его срок службы и время наработки на отказ. Однако это еще и помогает маркетологам завышать технические характеристики компонентов, поэтому будьте очень внимательны при использовании подобных кривых.

Кривая, характеризующая снижение нагрузочной способности при увеличении температуры, вообще является основным источником ошибок. Очевидно, что при максимальной температуре кристалла ток должен быть нулевым, однако все остальные участки характеристики могут быть использованы в целях маркетинга. Это становится понятным, например, при сравнении кривых, показанных на рисунках 1 и 2. Обратите внимание на то, что в первом случае параметры нормируются при заданной температуре окружающей среды, а во втором — при температуре контактов элемента. Полное значение теплового сопротивления smd диода включает 2 составляющих: тепловое сопротивление «кристалл — вывод» и «вывод — контакт печатной платы». Вторая часть этой характеристики в большинстве практических применений вносит более 90% в общее значение. Это и является источником ошибок при использовании кривой, нормированной для температуры выводов, которая на практике ограничена значением не более 95°C. 

Наклон рассматриваемой нами кривой определяется тепловым сопротивлением конструкции, которая во многом зависит от свойств печатной платы и топологии трассировки. С этой точки зрения характеристика, предоставляемая изготовителем диода, может оказаться слишком оптимистичной. Точка начала перегиба кривой выбирается производителем и тоже используется как маркетинговый инструмент, повышающий привлекательность компонента. Например, диод, у которого снижение тока начинается со 110°C, кажется нам более мощным, чем выпрямитель, у которого излом характеристики происходит при 25°C. 

При сравнении двух диодов также очень полезно представлять себе их конструкцию и способ корпусирования. Например, корпус MiniMELF имеет длину всего 3,5 мм, но при этом наличие массивных медных выводов, припаянных к кристаллу, означает, что тепло от него будет отводиться очень эффективно (см. рис. 3). Это является очевидным преимуществом такого типа корпуса перед smd-конструктивом c плоскими (см. рис. 2) или аксиальными выводами. Чем меньше поперечное сечение контакта, тем хуже тепловое сопротивление и ниже допустимая плотность тока. Использование MELF технологии позволяет компании Diotec производить надежные выпрямительные диоды с номинальным током 1 А в миниатюрном корпусе MiniMELF, а в корпусе MELF-длиной 5 мм — с током до 3 А. 

Ценность технологий, используемых при производстве выпрямителей, явно недооценена. Десятки миллиардов диодов выпускается промышленностью каждый год, среди них выпрямители являются самыми популярными элементами силовой электроники. Диоды рассеивают большое количество мощности, они должны работать при высоких напряжениях и высоких температурах кристаллов. С точки зрения показателей надежности выпрямители используются в стрессовых условиях, но при этом находятся и под мощным ценовым давлением.

Одним из путей повышения надежности является снижение теплового сопротивления и, следовательно, уровня перегрева. Поскольку значение этого параметра во многом зависит от свойств конструкции, пользователям рекомендуется уделять самое пристально внимание тепловым характеристикам и измерять реальные значения рабочих температур. При использовании справочных данных, предоставляемых производителями компонентов, необходимо тщательно анализировать условия нормирования параметров и адаптировать их к реальным режимам эксплуатации.

Джос Ван Лоо

Рекомендуем почитать

Trench 4 — первая универсальная технология IGBT
23 октября 2014 г. в 16:09
Особенностью непрерывно растущего рынка частотных преобразователей является широкая номенклатура типов и версий, имеющих различные конструктивы, электрические параметры, сервисные функции. В первую очередь технический уровень подобных устройств зависит от свойств используемых силовых ключей. Электрические и тепловые характеристики модулей IGBT во многом определяют класс и область применения преобразователей частоты.
Модули SEMITOP от SEMIKRON для инверторов малой мощности
10 ноября 2014 г. в 16:40
Компания SEMIKRON известна в первую очередь благодаря своим разработкам в области силовой электроники. Однако фирма производит линейку модулей для маломощных применений. Отличные тепловые характеристики, высокая надежность и простота монтажа — основные преимущества семейства SEMITOP, представленного на рынке в конце 90-х.
Суперскоростной ЦАП с производительностью, измеряемой миллиардами выборок в секунду
28 декабря 2015 г. в 09:26
В статье рассматриваются некоторые параметры нового цифро-аналогового преобразователя LTC2000, особенности его функционального и конструктивного построения, а также варианты применения совместно с другими продуктами корпорации Linear Technology.
Датчики дифференциального давления от Omron
23 октября 2014 г. в 15:10
В марте прошлого года компания Omron Electronic Components BV, признанная во всем мире как лидер производства высококачественных инновационных электронных компонентов, представила серию цифровых датчиков дифференциального давления D6F-PH, обеспечивающих исключительную точность и повторяемость измерений таких параметров низкоскоростных воздушных потоков, как давление и расход, недостижимые для ранее используемых аналогов емкостного или пьезоэлектрического типа.
Пассивные компоненты, разработанные для увеличения отношения сигнал/шум
16 декабря 2014 г. в 09:40
Схемотехника систем специального назначения чрезвычайно разнообразна, однако к ним предъявляются общие эксплуатационные требования: устойчивость к воздействию ударов, вибраций и перепадам температуры, высокая надежность, нормальная работоспособность после длительного простоя, использование компонентов с высокой временной стабильностью параметров.

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.