Передача, распределение и накопление электроэнергии

​Заземление молниеотводов

21 марта 2016 г. в 17:27

Количество статей на эту тему трудно подсчитать. Заземляющее устройство - необходимый элемент каждого молниеотвода. Именно оно обеспечивает отвод в землю тока молнии. В любой инструкции по молниезащите написано, что этот процесс должен быть безопасным. Возникает вопрос, о какой безопасности речь? О безопасности людей и животных или о безопасности сложной электронной аппаратуры, которая смонтирована в защищаемом объекте?

На этот счет в нормативных документах нет пояснений. Попытка установить использованный принцип нормирования сопротивления заземления, как правило, кончается ничем. Составители нормативных документов на этот счет не распространяются. Чаще нормируется не сопротивление заземления, а минимально допустимая длина заземляющих шин (стандарт МЭК 62305) и даже полная конструкция заземлителя (отечественная Инструкция по молниезащите РД 34.21.122-87). Неоднозначность подобного “нормирования” достойна удивления. Вот, например, что следует из предписаний МЭК для регионов с различным удельным сопротивлением грунта.

Рис. 1

Зависимость сопротивления заземления от удельного
сопротивления грунта согласно стандарту МЭК 6230

Для второго уровня защиты допускается линейный рост сопротивления заземления молниеотвода по мере увеличения удельного сопротивления грунта ρ до 800 Ом*м, а в еще более высокоомных грунтах этот параметр должен почему-то снижаться, асимптотически приближаясь к величине около 65 Ом (рис. 1). Трудно придумать хоть какое-то физическое обоснование для такой зависимости, тем более, что ни в лаборатории, ни в полевых условиях не удалось обнаружить связи защитного действия молниеотвода с его сопротивлением заземления, по крайней мере вплоть до 100 Ом. Последнее легко объяснимо. Точка удара молнии определяется конкурирующим развитием встречных лидеров от молниеотвода и от защищаемого объекта. В начальной фазе этого процесса ток встречного лидера не превышает 10 А, а потеря напряжения от этого тока на сопротивлении заземления молниеотвода – приблизительно 1000 В – величина несопоставимо малая, по сравнению с тем перепадом напряжения в электрическом поле атмосферы, что питает встречные лидеры.

Если для защитного действия молниеотвода величина его сопротивления мало значима, при его выборе действительно трудно опираться на что-то иное, кроме требования безопасности. Обсуждая безопасность человека и животных, приходится оперировать величинами напряжений шага и прикосновения. Оба этих параметрах мало пригодны для нормирования в молниезащите, поскольку опасность воздействия напряжения на живой организм в очень сильной степени зависит от времени. К сожалению, в существующих отечественных предписаниях оно не опускается ниже 0,01 с, что на 2 порядка больше длительности тока молнии, а следовательно и напряжений, обусловленных его растеканием в земле. Попытка экстраполировать опасные значения на более кратковременные воздействия, исходя из неизменной выделившейся энергии – это первое, что представляется хоть сколько-нибудь логичным. Тогда вместо предельно допустимого значения 600 В для времени воздействия 0,01 с приходится ориентироваться на величину в 6000 В для 100 мкс. Жаль, что основа такого пересчета не обоснована в физиологическом отношении, хотя и альтернативы ему пока тоже не предвидится.

Важно рассмотреть типовые ситуации, связанные с растеканием тока молнии, чтобы оценить хотя бы на качественном уровне, насколько часто грозовые воздействия создают напряжения шага, реально опасные для человека. Логично начинать с типовых заземляющих устройств, что упомянуты в отечественном нормативе РД 34.21.122-87 и в стандарте МЭК 62305. Результаты таких расчетов представлены на следующем графике (рис. 2).

Рис. 2

Расчет напряжений шага при растекании тока молнии
через заземлители типовых конструкций

Они выполнены для горизонтальной шины длиной 10 м, которая предписана стандартом МЭК для грунтов с удельным сопротивлением до 500 Ом*м (при Iуровне защиты), а с тремя вертикальными стержнями длиной от 3 м - Инструкцией РД 34.21.122-87 для любых отдельно стоящих молниеотводов. Расчетные значения напряжения шага на графике нормированы произведением ρIМ и потому пригодны для оценок в любой линейной среде при произвольном токе молнии IM. Картина получается не слишком оптимистичной. Даже при удалении от молниеотвода на 10 м нормированное расчетное значение превышает по абсолютной величине 0,0015 м-1. Это значит, что при токе молнии 100 кА (IIIуровень защиты) напряжение шага превысит 15 кВ в грунте с ρ = 100 Ом*м, и 150 кВ при ρ = 1000 Ом*м. Остается заметить, что на практике приходится иметь дело и с более высокоомными средами. Это означает, что окрестность любого отдельно стоящего молниеотвода с заземлителем, изготовленным по предписаниям ныне действующих нормативных документов, представляет реальную опасность для населения и обслуживающего персонала защищаемого сооружения.

Теперь о молниеотводах, установленных непосредственно на сооружении. Как правило, роль их заземлителя выполняет фундамент здания. Пусть это будет здание с большой площадью основания 50 х 50 м, свайный фундамент которого заглублен на 10 м. Такое исполнение контура заземления скорее всего типично для высотных многоэтажных зданий. Результаты расчета (рис. 3) показывают, что распределение электрического поля на земле в окрестности здания выровнено в значительно большей степени, чем у основания отдельно стоящего молниеотвода, но и здесь напряжение шага рядом с фундаментом может превысить 30 кВ, если здание построено на участке с удельным сопротивлением грунта выше 1000 Ом*м. Печальный опыт сотрудников высоковольтных лабораторий говорит, что микросекундное воздействие такого напряжения надолго остается в памяти. Без организации специальной защиты его вряд ли можно считать безопасным для человека. Как минимум, ее надо предусматривать непосредственно у стен здания, где тротуар следует покрывать сплошным изоляционным материалом (например, асфальтом), но никак не керамической плиткой, у которой зазоры заполнены грунтом и пропитаны влагой во время дождя.

Рис. 3. Расчет напряжений шага в случае молниеотводов,
установленных непосредственно на здании

Снова возвращаясь к отдельно стоящим молниеотводам, стоит отметить, что они наиболее опасны при установке на различного рода высоких мачтах и колоннах, размещенных в черте городской застройки, например, на памятных обелисках, у которых вполне возможно скопление людей. Стремление снизить напряжения шага здесь наиболее значимо. В этом отношении заслуживает внимания система изолированной молниезащиты с использованием изолированных токоотводов с высокопрочной изоляцией, подобных тем, что разработала и производит фирма DEHN+ SÖHNE. Монтаж такой системы позволяет отвести ток молнии в глубинный заземлитель, не загружая им непосредственно арматуру железобетонного фундамента сооружения. В итоге распределение потенциалов по поверхности грунта оказывается существенно выровненным.

Расчетные данные на рис. 4 позволяют оценить эффект в случае использования бетонного основания 30 х 30 м с вмонтированной в него металлической сетки с ячейками 5 х 5 м; стержневой заземлитель длиной 5 м размещен на глубине 30 м. Практически линейный закон изменения потенциала указывает на неизменность напряжения шага в окрестности защищаемого объекта. Значение величины U/(ρIM) ≈ 6×10-5 м-1 означает, что при токе молнии 100 кА и удельном сопротивлении грунта 1000 Ом*м напряжение шага будет лежать в пределах 6 кВ, что примерно на порядок меньше, чем в случае традиционного решения.

Рис. 4 Расчет напряжений шага при использовании изолированной системы молниезащиты

В основе изолированной системы молниезащиты лежат токоотводы HVI® с высоковольтной изоляцией и полупроводниковым покрытием, выравнивающим электрическое поле вдоль наружной поверхности токоотвода и предотвращающим развитие скользящих разрядов. Токоотводы семейства HVI® (рис. 5) выпускаются трех типов в зависимости от электрической прочности их изоляции и рассчитаны на применение в системах молниезащиты различных уровней. Также возможны варианты токоотводов с дополнительным серым покрытием, обеспечивающим защиту от погодных условий и ультрафиолетового излучения. Кроме того, такие токоотводы могут быть выкрашены в цвет фасада здания, визуально сливаясь с ним, что может быть полезно с дизайнерской точки зрения.

Рис. 5 Семейство изолированных токоотводов HVI® компании DEHN + SÖHNE

Более высокая стоимость изолированных молниеотводов по сравнению с традиционными не должна препятствовать их использованию, когда речь идет о массовой защите людей. Дело за уточнением нормативных требований действующих стандартов по молниезащите.

Источник: Компания «ДЕН РУС»

👉 Подписывайтесь на Elec.ru. Мы есть в Телеграм, ВКонтакте и Одноклассниках

Стекольникова Татьяна Викторовна
Все новости и публикации пользователя Стекольникова Татьяна в персональной ленте вашего личного кабинета на Elec.ru
Подписаться
Читайте также
Новости по теме
Объявления по теме

ПРОДАМ: "Jupiter" - Изолированная молниезащита

Изолированная молниезащита применяется в тех случаях, когда требуется соблюдение безопасного расстояния (разделительного интервала) от молниеприемников и токоотводов до защищаемого оборудования согласно требованиям международных стандартов по молниезащите (МЭК 62305-3). Чаще всего, данная система выполняется для сооружений со значительным количеством технологического оборудования на кровле, для которого протекание тока молнии по молниеприемнику может представлять опасность
Бирева Татьяна · ДКС · 25 марта · Россия · Тверская обл
"Jupiter" - Изолированная молниезащита

ПРОДАМ: Молниеотводы граненые (МОГК)

Для защиты от ударов молний зданий, сооружений и защиты от перенапряжения в питающей сети. Молниеприемник непосредственно воспринимающий на себя молнии- это стальной стержень, защищенный от коррозии. Защищен от коррозии методом горячего цинкования (ГОСТ 9.307-2021). Данный вид покрытия не является декоративным и носит сугубо функциональный характер. гарантия на коррозийную стойкость — не менее 25 лет. Возможно изготовление по индивидуальному заказу любых типоразмеров для использования в I–VII ветровом районе. Для каждого объекта конструкция опоры рассчитывается индивидуально с учетом нагрузок.
АО АМИРА · АМИРА · 25 марта · Россия · г Санкт-Петербург
Молниеотводы граненые (МОГК)

ПРОДАМ: Молниеотводы на базе высокомачтовой опоры освещения с мобильной короной (ВГМ)

Для обеспечения равномерного освещения территорий во всех направлениях, защиты от ударов молний зданий, сооружений и защиты от перенапряжения в питающей сети. Молниеприемник непосредственно воспринимающий на себя молнии- это стальной стержень, защищенный от коррозии. Защищены от коррозии методом горячего цинкования (ГОСТ 9.307-2021). Данный вид покрытия не является декоративным и носит сугубо функциональный характер. Гарантия на коррозийную стойкость — не менее 25 лет. Молниеотводы ВГМ представляют собой стальные граненые мачты, на вершине которых размещена мобильная корона с осветительным оборудованием и молниеприемником. Опоры ВГМ имеют как типовые исполнения, рассчитанные на обычные условия эксплуатации, так и индивидуальные, с учетом особых климатических условий и требований заказа. Возможно изготовление по индивидуальному заказу любых типоразмеров для использования в I–VII ветровом районе. Для каждого объекта конструкция опоры рассчитывается индивидуально. Оборудование, которое выпускает «АМИРА», сопровождает Вас повсюду: едете ли Вы по освещенной скоростной автомагистрали, прибываете ли в аэропорт, приходите ли поболеть за любимую команду на стадион, оставляете ли машину на парковке у торгового центра, гуляете ли по центральным историческим улицам и набережным Санкт-Петербурга или других городов России –оборудование с логотипом AMIRA обеспечивает Вам комфорт и безопасность. Мы гордимся тем, что можем обеспечить сферу наружного освещения качественным и надежным оборудованием, это способствует повышению качества жизни людей. Уже более 25 лет компания «АМИРА» является одним из лидеров в области наружного освещения, предоставляет клиентам комплексные решения «под ключ». Все новое, что есть на данный момент в светотехнической отрасли: светодиодные светильники, максимально удобные и экономичные в обслуживании мачты и опоры освещения, автономные уличные осветители, работающие от энергии солнца и ветра — все нашло применение в наших новых разработках...
АО АМИРА · АМИРА · 25 марта · Россия · г Санкт-Петербург
Молниеотводы на базе высокомачтовой опоры освещения с мобильной короной (ВГМ)

ПРОДАМ: Молниеотводы на базе высокомачтовой опоры освещения со стационарной короной (ВГН)

Для обеспечения равномерного освещения территорий во всех направлениях, защиты от ударов молний зданий, сооружений и защиты от перенапряжения в питающей сети. Молниеприемник непосредственно воспринимающий на себя молнии- это стальной стержень, защищенный от коррозии. Защищены от коррозии методом горячего цинкования (ГОСТ 9.307-89). Данный вид покрытия не является декоративным и носит сугубо функциональный характер. Гарантия на коррозийную стойкость — не менее 25 лет. Молниеотводы ВГН представляют собой стальные граненые мачты, на вершине которых размещено осветительное оборудование и молниеприемники. Опоры ВГН имеют как типовые исполнения, рассчитанные на обычные условия эксплуатации, так и индивидуальные, с учетом особых климатических условий и требований заказа. Возможно изготовление по индивидуальному заказу любых типоразмеров для использования в I-VII ветровом районе. Для каждого объекта конструкция опоры рассчитывается индивидуально. Оборудование, которое выпускает «АМИРА», сопровождает Вас повсюду: едете ли Вы по освещенной скоростной автомагистрали, прибываете ли в аэропорт, приходите ли поболеть за любимую команду на стадион, оставляете ли машину на парковке у торгового центра, гуляете ли по центральным историческим улицам и набережным Санкт-Петербурга или других городов России –оборудование с логотипом AMIRA обеспечивает Вам комфорт и безопасность. Мы гордимся тем, что можем обеспечить сферу наружного освещения качественным и надежным оборудованием, это способствует повышению качества жизни людей. Уже более 25 лет компания «АМИРА» является одним из лидеров в области наружного освещения, предоставляет клиентам комплексные решения «под ключ». Все новое, что есть на данный момент в светотехнической отрасли: светодиодные светильники, максимально удобные и экономичные в обслуживании мачты и опоры освещения, автономные уличные осветители, работающие от энергии солнца и ветра — все нашло применение в наших новых разработках и представлено на...
АО АМИРА · АМИРА · 25 марта · Россия · г Санкт-Петербург
Молниеотводы на базе высокомачтовой опоры освещения со стационарной короной (ВГН)

УСЛУГИ: Испытания средств защиты

Для безопасной работы в электроустановках необходимо пользоваться специализированными средствами защиты. Для каждого средства защиты имеется свой поверочный срок, по прошествии которого необходимо проверять защитные свойства изделия. Электротехническая лаборатория «Лидер» проводит испытания средств защиты, используемых в электроустановках. По результатам проведенных испытаний выдается стандартизированный протокол о соответствии средств защиты. При работе в электроустановках используются: — ​средства защиты от поражения электрическим током (электрозащитные средства); — средства защиты от электрических полей; — средства индивидуальной защиты (СИЗ) в соответствии с государственным стандартом (средства защиты головы, глаз и лица, рук, органов дыхания, одежда специальная защитная). Виды некоторых испытаний средств защиты: — испытания перчаток диэлектрических; — испытания галош диэлектрических; — испытания бот диэлектрических; — испытания указателей напряжения; — испытания штанг изолирующих; — испытания электроизмерительных клещей. г. Челябинск, ул. 60-летия Октября, д. 18, +7 908 572-68-13
Испытания средств защиты
Российский производитель и бренд низковольтной аппаратуры: электрооборудования для ввода, распределения и учета электричества, локальной автоматизации технологических процессов, а также комплексных энергоэффективных решений для любой отрасли индустрии.