​Заземление молниеотводов

Опубликовано: 21 марта 2016 г. в 17:27, 180 просмотровКомментировать

Количество статей на эту тему трудно подсчитать. Заземляющее устройство - необходимый элемент каждого молниеотвода. Именно оно обеспечивает отвод в землю тока молнии. В любой инструкции по молниезащите написано, что этот процесс должен быть безопасным. Возникает вопрос, о какой безопасности речь? О безопасности людей и животных или о безопасности сложной электронной аппаратуры, которая смонтирована в защищаемом объекте?

На этот счет в нормативных документах нет пояснений. Попытка установить использованный принцип нормирования сопротивления заземления, как правило, кончается ничем. Составители нормативных документов на этот счет не распространяются. Чаще нормируется не сопротивление заземления, а минимально допустимая длина заземляющих шин (стандарт МЭК 62305) и даже полная конструкция заземлителя (отечественная Инструкция по молниезащите РД 34.21.122-87). Неоднозначность подобного “нормирования” достойна удивления. Вот, например, что следует из предписаний МЭК для регионов с различным удельным сопротивлением грунта.

Рис. 1

Зависимость сопротивления заземления от удельного
сопротивления грунта согласно стандарту МЭК 6230

Для второго уровня защиты допускается линейный рост сопротивления заземления молниеотвода по мере увеличения удельного сопротивления грунта ρ до 800 Ом*м, а в еще более высокоомных грунтах этот параметр должен почему-то снижаться, асимптотически приближаясь к величине около 65 Ом (рис. 1). Трудно придумать хоть какое-то физическое обоснование для такой зависимости, тем более, что ни в лаборатории, ни в полевых условиях не удалось обнаружить связи защитного действия молниеотвода с его сопротивлением заземления, по крайней мере вплоть до 100 Ом. Последнее легко объяснимо. Точка удара молнии определяется конкурирующим развитием встречных лидеров от молниеотвода и от защищаемого объекта. В начальной фазе этого процесса ток встречного лидера не превышает 10 А, а потеря напряжения от этого тока на сопротивлении заземления молниеотвода – приблизительно 1000 В – величина несопоставимо малая, по сравнению с тем перепадом напряжения в электрическом поле атмосферы, что питает встречные лидеры.

Если для защитного действия молниеотвода величина его сопротивления мало значима, при его выборе действительно трудно опираться на что-то иное, кроме требования безопасности. Обсуждая безопасность человека и животных, приходится оперировать величинами напряжений шага и прикосновения. Оба этих параметрах мало пригодны для нормирования в молниезащите, поскольку опасность воздействия напряжения на живой организм в очень сильной степени зависит от времени. К сожалению, в существующих отечественных предписаниях оно не опускается ниже 0,01 с, что на 2 порядка больше длительности тока молнии, а следовательно и напряжений, обусловленных его растеканием в земле. Попытка экстраполировать опасные значения на более кратковременные воздействия, исходя из неизменной выделившейся энергии – это первое, что представляется хоть сколько-нибудь логичным. Тогда вместо предельно допустимого значения 600 В для времени воздействия 0,01 с приходится ориентироваться на величину в 6000 В для 100 мкс. Жаль, что основа такого пересчета не обоснована в физиологическом отношении, хотя и альтернативы ему пока тоже не предвидится.

Важно рассмотреть типовые ситуации, связанные с растеканием тока молнии, чтобы оценить хотя бы на качественном уровне, насколько часто грозовые воздействия создают напряжения шага, реально опасные для человека. Логично начинать с типовых заземляющих устройств, что упомянуты в отечественном нормативе РД 34.21.122-87 и в стандарте МЭК 62305. Результаты таких расчетов представлены на следующем графике (рис. 2).

Рис. 2

Расчет напряжений шага при растекании тока молнии
через заземлители типовых конструкций

Они выполнены для горизонтальной шины длиной 10 м, которая предписана стандартом МЭК для грунтов с удельным сопротивлением до 500 Ом*м (при Iуровне защиты), а с тремя вертикальными стержнями длиной от 3 м - Инструкцией РД 34.21.122-87 для любых отдельно стоящих молниеотводов. Расчетные значения напряжения шага на графике нормированы произведением ρIМ и потому пригодны для оценок в любой линейной среде при произвольном токе молнии IM. Картина получается не слишком оптимистичной. Даже при удалении от молниеотвода на 10 м нормированное расчетное значение превышает по абсолютной величине 0,0015 м-1. Это значит, что при токе молнии 100 кА (IIIуровень защиты) напряжение шага превысит 15 кВ в грунте с ρ = 100 Ом*м, и 150 кВ при ρ = 1000 Ом*м. Остается заметить, что на практике приходится иметь дело и с более высокоомными средами. Это означает, что окрестность любого отдельно стоящего молниеотвода с заземлителем, изготовленным по предписаниям ныне действующих нормативных документов, представляет реальную опасность для населения и обслуживающего персонала защищаемого сооружения.

Теперь о молниеотводах, установленных непосредственно на сооружении. Как правило, роль их заземлителя выполняет фундамент здания. Пусть это будет здание с большой площадью основания 50 х 50 м, свайный фундамент которого заглублен на 10 м. Такое исполнение контура заземления скорее всего типично для высотных многоэтажных зданий. Результаты расчета (рис. 3) показывают, что распределение электрического поля на земле в окрестности здания выровнено в значительно большей степени, чем у основания отдельно стоящего молниеотвода, но и здесь напряжение шага рядом с фундаментом может превысить 30 кВ, если здание построено на участке с удельным сопротивлением грунта выше 1000 Ом*м. Печальный опыт сотрудников высоковольтных лабораторий говорит, что микросекундное воздействие такого напряжения надолго остается в памяти. Без организации специальной защиты его вряд ли можно считать безопасным для человека. Как минимум, ее надо предусматривать непосредственно у стен здания, где тротуар следует покрывать сплошным изоляционным материалом (например, асфальтом), но никак не керамической плиткой, у которой зазоры заполнены грунтом и пропитаны влагой во время дождя.

Рис. 3. Расчет напряжений шага в случае молниеотводов,
установленных непосредственно на здании

Снова возвращаясь к отдельно стоящим молниеотводам, стоит отметить, что они наиболее опасны при установке на различного рода высоких мачтах и колоннах, размещенных в черте городской застройки, например, на памятных обелисках, у которых вполне возможно скопление людей. Стремление снизить напряжения шага здесь наиболее значимо. В этом отношении заслуживает внимания система изолированной молниезащиты с использованием изолированных токоотводов с высокопрочной изоляцией, подобных тем, что разработала и производит фирма DEHN+ SÖHNE. Монтаж такой системы позволяет отвести ток молнии в глубинный заземлитель, не загружая им непосредственно арматуру железобетонного фундамента сооружения. В итоге распределение потенциалов по поверхности грунта оказывается существенно выровненным.

Расчетные данные на рис. 4 позволяют оценить эффект в случае использования бетонного основания 30 х 30 м с вмонтированной в него металлической сетки с ячейками 5 х 5 м; стержневой заземлитель длиной 5 м размещен на глубине 30 м. Практически линейный закон изменения потенциала указывает на неизменность напряжения шага в окрестности защищаемого объекта. Значение величины U/(ρIM) ≈ 6×10-5 м-1 означает, что при токе молнии 100 кА и удельном сопротивлении грунта 1000 Ом*м напряжение шага будет лежать в пределах 6 кВ, что примерно на порядок меньше, чем в случае традиционного решения.

Рис. 4 Расчет напряжений шага при использовании изолированной системы молниезащиты

В основе изолированной системы молниезащиты лежат токоотводы HVI® с высоковольтной изоляцией и полупроводниковым покрытием, выравнивающим электрическое поле вдоль наружной поверхности токоотвода и предотвращающим развитие скользящих разрядов. Токоотводы семейства HVI® (рис. 5) выпускаются трех типов в зависимости от электрической прочности их изоляции и рассчитаны на применение в системах молниезащиты различных уровней. Также возможны варианты токоотводов с дополнительным серым покрытием, обеспечивающим защиту от погодных условий и ультрафиолетового излучения. Кроме того, такие токоотводы могут быть выкрашены в цвет фасада здания, визуально сливаясь с ним, что может быть полезно с дизайнерской точки зрения.

Рис. 5 Семейство изолированных токоотводов HVI® компании DEHN + SÖHNE

Более высокая стоимость изолированных молниеотводов по сравнению с традиционными не должна препятствовать их использованию, когда речь идет о массовой защите людей. Дело за уточнением нормативных требований действующих стандартов по молниезащите.

Источник: Компания «ДЕН РУС»

Информация о компании

ДЕН РУС, ООО
DEHN + SÖHNE имеет 100-летний успешный опыт работы и является признанным и ведущим предприятием на рынке молниезащиты. ∙ Защита от импульсных перенапряжений. ∙ Внешняя молниезащита. ∙ Средства электрозащиты. Оборудование DEHN смонтировано на объектах, принадлежащих ко всем областям экономики и транспорта - аэропорты, железные дороги, трубопроводы, предприятия нефтегазового сектора, объекты мобильной связи, промышленные объекты, памятниках старины, а также объекты гражданского и жилищного строительства.

Контакты:

Ф.И.О. Стекольникова Татьяна Викторовна  нет отзывов
Должность: Менеджер по маркетингу
Компания: ООО "ДЕН РУС"
Страна:  Россия
Телефон: +7 (495) 663-35-73
Сообщите, что нашли информацию на сайте «Элек.ру»
Факс: +7 (495) 663-35-73
Web: http://www.dehn-ru.com/
Зарегистрирована: 19 октября 2011 г.
Последний раз была на сайте 189 дней назад
  Отправить сообщение

Рекомендуем почитать

Комментировать

    Еще никто не оставил комментариев.

Для того чтобы оставлять комментарии Вам необходимо зарегистрироваться либо авторизоваться на сайте.