Передача, распределение и накопление электроэнергии

Постоянный ток: грядёт ли революция?

20 ноября 2019 г. в 10:26

Гениальный изобретатель Томас Эдисон сделал ставку на постоянный ток и проиграл. Но сегодня постоянный поток ищет новых чемпионов.

Томас Эдисон считается одним из величайших изобретателей в истории. Являясь создателем таких изобретений, как фонограф и электрическая лампочка, он имеет 1093 патента на свое имя. Эдисон запустил свою первую электростанцию в 1882 году, которая, среди прочего, обеспечивала электроэнергией Уолл-стрит в Нью-Йорке. Электростанция использовала постоянный ток.

Одновременно сотрудник Эдисона Никола Тесла успешно развивал динамо-машину. Но у хорватского ученого была другая идея. Вместо постоянного тока Тесла сосредоточился на развитии переменного тока. После спора с Эдисоном, Тесла продолжил свою работу с соперником Эдисона Джорджем Вестингхаусом. Переменный ток показывал очевидные преимущества. Для передачи на большие расстояния напряжение может быть легко отрегулировано с помощью трансформаторов. Используемый кабель также может быть тоньше и, следовательно, дешевле. Вместо признания этих преимуществ и поддержки переменного тока, Эдисон настаивал на своем и пытался дискредитировать своих конкурентов. Эдисон утверждал, что недавно изобретённое электрическое кресло было оснащено технологией его соперников. Его послание было простым: переменный ток обречен. Хотя его кампания была успешной, победа Эдисона длилась недолго. Чикагская всемирная ярмарка 1893 года была оснащена оборудованием, использующим переменный ток, предвещая покорение электрической революции 20-го века.

Позже Томас Эдисон признался сыну: «Я думаю, что момент, когда я отказался поддерживать переменный ток, был самой большой ошибкой в моей жизни».

Постоянный ток: возрождение старой технологии

Solar Smart Grid
Solar Smart Grid на Гаити

Сегодня, спустя 86 лет после смерти Эдисона, есть признаки того, что великий изобретатель не так уж и ошибался относительно постоянного тока, как когда-то считали люди. Идеи Эдисона становятся снова актуальными, так как ряд последних событий делает постоянный ток более привлекательным.

Раньше электричество производилось переменным током в генераторах крупных угольных или атомных электростанций, а также в гидротурбинах. Они распределяют энергию через сеть переменного тока. Трансформаторы позволяют увеличить напряжение до нескольких сотен тысяч вольт, удерживая ток в кабелях. Но сейчас ряд поставщиков электроэнергии становятся на путь использования постоянного тока. К ним относятся, например, солнечные электростанции, которые обычно поддерживаются батареями или электрохимическими системами хранения. Преобразование постоянного тока в переменный неизбежно связано с потерями, что делает сеть постоянного тока лучшим выбором для этих поставщиков.

Централизованное и децентрализованное энергоснабжение

Крупные электростанции уже давно доминируют в сегменте поставщиков электроэнергии, централизованно распределяя свою энергию в окружающие районы. Но рост использования возобновляемых источников энергии приводит к тому, что сеть становится более децентрализованной и более локальной, причем электричество часто потребляется там, где оно генерируется.

Преимущества переменного тока здесь бесполезны. Но даже на больших расстояниях переменный ток не идеален. Потери при передаче электроэнергии на расстоянии значительно увеличились. Именно поэтому Китай строит сложные электросети на основе высоковольтных линий передачи постоянного тока (также известных как HVDC), которые способны передать большое количество энергии от гидроэлектростанций в глубине страны к шумным городам на побережье. В Германии правительство также планирует построить две подобные линии для передачи избыточной энергии ветра с побережья на юг. Линии передачи HVDC в два раза дороже, чем обычные системы. Однако из-за меньших потерь энергии эти расходы окупают себя с расстояния около 400 километров или всего 60 километров в случае плавучих ветропарков.

Линии HVDC в настоящее время являются чрезвычайно надежными. Высокопроизводительная электроника позволила достичь прогресса в преобразовании энергии, что позволяет конвертировать прямые токи до 800 000 вольт без трансформатора.

Электричество в жилых домах и на фабриках распределяется либо по низковольтным электросетям, либо через штепсельные разъемы, либо через трехфазные токовые соединения. Все большее количество электроприборов требует постоянного тока. Компьютеры, светодиодные лампы и другие электронные устройства работают на постоянном токе и ранее требовали трансформатора для преобразования. В ближайшие годы к этому списку добавятся электромобили. В промышленном оборудовании все чаще используются преобразователи частот со звеном постоянного тока для регулирования скорости. Сети постоянного тока с преобразованием центрального напряжения сделают все эти трансформаторы ненужными. На данный момент в автомобильной промышленности уже есть пилотные проекты, в которых комплексное производственное оборудование функционирует исключительно с постоянным током. У них также есть батареи для кратковременного хранения энергии.

Увеличение потерь энергии при использовании постоянного тока

Наиболее убедительным аргументом в пользу этого изменения является эффективность. Когда угольные и атомные электростанции подают напряжение в сеть с переменным током, который затем потребляется непосредственно лампочками и пылесосами, его эффективность составляет около 65 %. Другими словами, около трети электрической энергии теряется, например, за счет потерь тепла.

Сегодня ситуация заметно усугубилась. В результате использования фотогальванических систем и электростанций, наряду с увеличением использования батарей, все больше и больше электроэнергии подается в сеть, которая сначала должна быть преобразована из постоянного тока в переменный, что приводит к ее потерям. Потребители также страдают. Нагревающиеся адаптеры являются свидетельством потерь энергии. Это означает, что эффективность нашей энергосети составляет всего лишь 56 %. Следовательно, необходимо фундаментальное переосмысление этих процессов.

Альтернативой является использование технологий постоянного тока (DC), таких как высоковольтные линии передачи постоянного тока (HVDC) для подачи электроэнергии на большие расстояния, вместе с низковольтными сетями постоянного тока в домашних хозяйствах и промышленности. Они могут быть напрямую подключены к электронным устройствам или промышленным приводам без необходимости использования адаптера или трансформатора. При использовании фотогальванической системы на крыше жилого дома и электромобиля в гараже эффективность будет непревзойденной. Электрическая сеть, систематически настроенная на постоянный ток, обеспечит общую эффективность в 90 %. Если эффективность будет всего на 10 % выше, тогда две крупнейшие угольные электростанции в Германии могут быть отключены. Это позволит сэкономить 63 миллиона тонн CO2, или 12 % от общего объема выбросов электростанций в Германии. Для оксидов азота этот показатель еще выше — 29 %.

Технические и экономические проблемы перехода на постоянный ток

Технические и экономические проблемы перехода на постоянный ток

Несмотря на то, что высоковольтная передача постоянного тока в настоящее время является проверенной и общепринятой технологией, по-прежнему существует ряд технических и экономических вопросов, в том числе о сетях с низким напряжением, на которые необходимо ответить:

  • Сможет ли постоянный ток заменить переменный в широком спектре применений?
  • Будут ли обе технологии продолжать существовать одновременно друг с другом?
  • Как могло бы выглядеть подобное сосуществование?
  • Какие технические и экономические препятствия необходимо преодолеть?
  • Какие меры безопасности будут необходимы и одновременно эффективны?
  • Какие изменения потребовал бы переход на постоянный ток в сети и как это повлияет на потребителей?

Преимущества такого «переключения» настолько значительны, что не может быть никаких сомнений в том, что приближается смена парадигмы. Обладая серьезным опытом в области разработки соединительных технологий, LAPP сразу же занимает здесь ведущее положение.

Компания является ассоциированным партнером в рамках проекта DC-INDUSTRIE, входящего в 6-ю программу исследований энергетики, которая проводится федеральным министерством экономики и энергетики Германии (BMWi). Исследовательский проект DC-INDUSTRIE посвящен вопросу о том, как можно создать сети постоянного тока с центральным процессом конверсии в качестве альтернативы энергосбережению, особенно при эксплуатации оборудования на производственных линиях, а также о том, как лучше использовать возобновляемые источники энергии.

Георг Ставови, член правления по инновациям LAPP: «В компании LAPP мы видим большой потенциал в постоянном токе и можем способствовать исследованиям данного направления с нашими обширными знаниями».

Источник: Компания LAPP

👉 Подписывайтесь на Elec.ru. Мы есть в Телеграм, ВКонтакте и Одноклассниках

Информация о компании

Lapp Russia — дочернее предприятие холдинга LAPP в России, мирового инновационного производителя и системного поставщика кабелей, проводов, кабельных аксессуаров для различных отраслей: электротехники, энергетики, машиностроения, нефтегазовой, производства промышленного оборудования, автомобильной промышленности и многих других. Производитель и поставщик кабельно-проводниковой продукции под торговыми марками: ÖLFLEX®, UNITRONIC®, SKINTOP®, HITRONIC®, FLEXIMARK®, SILVYN®, EPIC®.
Читайте также
Новости по теме
Объявления по теме

ПРОДАМ: ОБОРУДОВАНИЕ RICHARDSON ELECTRONICS

Richardson Electronics объединяет ведущих производителей электронных ламп и компонентов Amperex, CPI, Draloric, Eimac, General Electric, Hitachi, Jennings, L-3, National, NJRC, Thales и Toshiba, используемых в промышленных энергетических установках. Продукты и решения Richardson Electronics находят применение в таких отраслях, как: Альтернативная энергетика Связь и телекоммуникации Промышленное Оборудование Морское навигационное оборудование и Авионика Медицина, здравоохранение Производство полупроводников Перечень продукции включает: Конденсаторы - Вакуумные конденсаторы - Керамические радиочастотные силовые конденсаторы - Синтетические конденсаторы Электромеханические компоненты - Прерыватели - Вакуумные реле - Датчики управления температурой Электронные лампы и вакуумные устройства - Индуктивные выходные трубки (IOTs) - Игнитроны - Электронные пушки - Клистроны - Магнетроны - Магнетронно-импульсные пентоды - Плоские триоды - Выпрямители и диодные трубки - Тетроды - Газовые вентили - Тиратроны большой мощности - Триоды - ТВТ - Электронные трубки с холодным Катодом - Реле задержки - Диакроды - Электронные трубки Гейгера-Мюллера - Трубки ионизационного датчика - Приемные трубки - Оборудование для тестирования СВЧ систем Электрооптика Продукты с Высокой Передачей Энергии - Игнитроны - Тиратроны большой мощности - Генераторы искрового разрядника (Richardson Electronics поставляет полную линейку искровых разрядников, включая разрядники перенапряжения (Стеклянные и керамические) и разрядники срабатывания (Вакуумные и газонаполненные). Индукторы Расходные материалы и детали для лазеров - RF Трубки - Лазерные фильтры - Лазерные линзы - Лазерные сильфоны - Зеркала для лазеров - Лазерные насадки и аксессуары - Наборы для водоподготовки и очистки Компоненты линейного ускорителя - Постоянные магниты - Электромагниты Источники СВЧ-Энергии - Микроволновые генераторы - Источники питания СВЧ - Магнетронные головки СВЧ Магнетроны - Магнетроны CW - Импульсные...
Бурцев Тимур · НОВА-ТЕХ · Вчера · Россия · г Санкт-Петербург
ОБОРУДОВАНИЕ RICHARDSON ELECTRONICS

ПРОДАМ: Приводы постоянного тока

Компания ООО «Драйвика» специализируется на поставке и внедрении приводной техники постоянного тока (реверсивных, не реверсивных)ведущих мировых брендов: Siemens — (Simoreg DC master, Sinamics DCM, двигатели постоянного тока); Sprint-Electric — привода постоянного тока (200XLV, 340, 680, 1220, 340i, 680i, 1220i, 340XRi, 680XRi, 1220XRi, 370, 370E, 400E, 800E, 1200E, 400ER, 800ER, 1200ER, 400, 800, 1200, 400i, 1600i, 3200i, 3600XRi, PL, PLX, SL, SLX, SLE), цифровые индикаторы. Control Techniques (Mentor, Mentor MP, Puma, Cheetah, Lynx, 4q2, Mini Maestro, Midi Maestro, Maxi Maestro). T-T Electric — TT12 и TTX12 — 12 А; • TT24 и TTX24 — 24 А; • TT36 и TTX36 — 36 А; • TT51 и TTX51 — 51 А; • TT72 и TTX72 — 72 А; • TT99 и TTX99 — 99 А; • TT123 и TTX123 — 123 А; • TT155 и TTX155 — 155 А; • TT205 и TTX205 — 205 А; • TT270 и TTX270 — 270 А; • TT330 и TTX330 — 330 А; • TT430 и TTX430 — 430 А; • TT530 и TTX530 — 530 А; • TT630 — 630 А; • TT650 и TTX650 — 650 А; • TT750 и TTX750 — 750 А; • TT850 и TTX850 — 850 А; • TT950 и TTX950 — 950 А; • TT1050 и TTX1050 — 1050 А; • TT1250 и TTX1250 — 1250 А; • TT1450 и TTX1450 — 1450 А; • TT1650 и TTX1650 — 1650 А; • T1850 и TTX1850 — 1850 А; • TT2050 и TTX2050 — 2050 А; • TT2250 и TTX2250 — 2250 А; Доступны следующие опции приводов постоянного тока TT/X: • Потенциометр задания скорости/момента POTKIT; • плата Profibus; • плата DeviceNet; • переходник для установки плат — LA103690; • шлейф для подключения Profibus/DeviceNet — LA103001; • кабель для подключения компьютера к приводу — LA102595; • кабель для соединения 2 приводов — LA102596; • набор воздуховодов для TT/X 650 — 1050 — LA103392; • набор воздуховодов для TT/X 1250 — 2250 — LA103402.
Зайцев Павел · Драйвика · 1 апреля · Россия · г Санкт-Петербург

ПРОДАМ: Реле тока утечки РТУ-300-300

ссылка для заказа на сайте elec.ru https://www.elec.ru/market/rele-toka-utechki-rtu-300-300-14973086712.html Реле тока утечки «РТУ-300-300» предназначено для: 1. Контроля дифференциального тока утечки в однофазных и трехфазных сетях переменного тока питания цифрового оборудования, где отключение питания является недопустимым. 2. Контроля уровня тока утечки в цепях системы защитного и рабочего (технологического, функционального) заземления. Трансформатор тока в комплекте. Преимущества Единственный производитель дифференциального реле в России Микропроцессорное управление Импульсный блок питания Конструкция Реле РТУ-300-300 выполнено в корпусе для установки на DIN-рейку. В комплекте с реле поставляется токовый трансформатор. На передней панели прибора находятся светодиодные индикаторы «Сеть», светодиодная шкала уровня тока утечки (дифференциального тока), переключатель уровня тока утечки, регулятор времени задержки на срабатывание, кнопка «ТЕСТ» и «СБРОС». Контакты «ТТ1» и «ТТ2» — подключение токового трансформатора, «N» и «L» — контакты подключения питания модуля, 14 и 11 — «сухие» контакты реле сигнализации. Цепи питания, измерения и контакты выходных реле гальванически разделены. Сечение проводов для подключения 0,5…1,5 мм² Напряжение питания, В ~220 +10/-20%, 50 Диапазон рабочих температур (без конденсата), оС -40 … +60 °С Коммутируемый ток контакта (АС1 250 В) max 5 А Потребляемая мощность, не более 1 Вт Уставка тока утечки 5, 10, 20, 30, 50, 100, 150, 200, 250, 300 мА Гистерезис вкл./выкл. сигнализации на пороговых значениях, не более 5% Временная задержка на вкл. сигнализации при превышении уставки тока утечки (регулир.) 0-4 с Стойкость к воздействию механических ВВФ (ГОСТ 17516.1-90) М25 Масса, кг 0,15 кг Габаритные размеры, мм 35×90×60 мм Гарантия, мес 24 Наши специалисты готовы провести консультации по электрооборудованию, помочь подобрать оптимальную модель, ответить на Ваши вопросы. Вы можете оформить заказ любым удобным для Вас способом. Наши...
Смолич Елена · НПК Электроэнергетика · 23 апреля · Россия · Московская обл
Реле тока утечки РТУ-300-300

ПРОДАМ: ООО"УралСнаб" Электроустановочные изделия

Электроустановочные изделия — это обобщающий термин для электротехнических изделий, предназначенных для коммутации переносных и стационарных потребителей электроэнергии и электрических цепей. Иными словами, электроустановочными изделиями можно назвать все то, что позволяет управлять освещением и обеспечивает возможность мгновенного подключения всевозможных приборов, устройств и гаджетов к электрической сети, то есть: розетки, выключатели, переключатели, диммеры и даже регуляторы теплого пола.
Кашин Игорь · УралСнаб · Вчера · Россия · Пермский край
ООО"УралСнаб" Электроустановочные изделия

ПРОДАМ: Реле: реле времени, твердотельные реле, тепловые реле, реле контроля фаз, реле тока

РЕЛЕ (от французского relais) — электромеханическое устройство (переключатель), предназначенное для коммутации электрических цепей при заданных изменениях электрических или неэлектрических входных величин. Различают электромагнитные, пневматические и температурные реле. В электронной схемотехнике иногда электронные блоки с функцией переключения цепи по изменению какого-либо физического параметра также называют реле. Например, фотореле, реле контроля фаз, твердотельные реле, герконовые реле. Основные части электромагнитного реле: электромагнит, якорь и переключатель. Электромагнит представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала. Якорь — пластина из магнитного материала, через толкатель управляющая контактами. При пропускании электрического тока через обмотку электромагнита возникающее магнитное поле притягивает к сердечнику якорь, который через толкатель смещает, и тем самым переключает контакты. Переключатели могут быть замыкающими, размыкающими, переключающими.
Бахарев Денис · ПКС · 22 апреля · Россия · г Москва
Реле: реле времени, твердотельные реле, тепловые реле, реле контроля фаз, реле тока
Компания ANDELI GROUP является производителем широкого спектра низковольтного, трансформаторного и высоковольтного оборудования, а также электромонтажной арматуры и сварочного оборудования. Ассортимент производимой продукции насчитывает более 300 серий и свыше 10000 наименований.