Compact CO₂ Laser with High Reliability, High Performance and High Functionality

FANUC LASER C series

C1000i-MODEL C
C2000i-MODEL C
C4000i-MODEL C
C6000i-MODEL C
Compact CO₂ Laser with High Reliability, High Performance and High Functionality

FANUC LASER C series

C1000i-C/C2000i-C/C4000i-C/C6000i-C

FANUC LASER C series i-MODEL C is designed for **Series 30i/31i-LB**, which is compact, high-performance and highly-reliability carbon-dioxide laser applicable to cut metallic and non-metallic materials.

High Efficiency and Economy

- Superior RF Discharge Excitation
 - High conversion efficiency
 - Stable laser output
- High-Efficiency Turbo Blower
 - Compact with large blowing capacity by high speed rotation
 - Employment of FANUC Built-in Spindle Motor
- Power Saving Functions
 - Quick Power Saving state
 - Eco Power Saving state

Superior Control Functions

- Oscillator Control
 - Direct Oscillator Control by CNC
 - Laser Power Feedback Control
 - Minute Laser Output Control and Calibration Function
 - Laser Cutting Condition Control

High-Speed High-Precision Cutting

- High-Speed Cutting Functions
 - High-Speed High-Precision Cutting Function
- High-Precision Cutting Functions
 - Edge Cutting Function
 - Nano Smoothing Function
 - Enhancement of pulse frequency command range
- High-Efficient Cutting Functions
 - Cutting Condition Setting Function
 - Gap Control Function
Highly Reliable Design

- RF Discharge Excitation with High Reliability and High Safety
 - All-solid-state laser power supply
 - Compact and high efficiency by latest MOSFETs
- Easy Maintenance
 - Screen of maintenance information history
 - Power compensation coefficient, run hour/maintenance time of parts etc.
 - Automatic Leakage Check Function
 - Automatic Power Supply Adjustment Function
 - Support Function for Start-Up after Turbo Oil Exchange
- Conformity to Safety Standards
 - EC directive (CE Marking)
 - FDA (U.S.)

Tuning for Dedicated System

- Tools for Dedicated Functions
 - Nano CNC system
 - C Language Executor
 - Real-Time Custom Macro
 - Personal Computer Function with Windows® OS
- Customization
 - Cutting condition data settings
System Configuration

FANUC LASER C series is supplied together with FANUC CNC and servo motors, which makes it easy for customers to construct high-performance laser cutting machines. **FANUC LASER C series** is compact, high-performance and high-reliability carbon-dioxide laser. Four models — C1000i-C, C2000i-C, C4000i-C, and C6000i-C — are available to tailor output to your processing needs. They are specifically developed to cut metallic and non-metallic materials. Pumped at 2MHz with RF discharge using all-solid-state laser power supply, the laser oscillator became compact, efficient, and stable. Moreover, the fast axial gas flow produces the optimum beam quality for the cutting process.

FANUC Series 30i/31i-LB realizes high-speed, high-precision laser cutting with **FANUC LASER C series.** **FANUC AC SERVO MOTOR i series**, which is the most widely used in the world, also improves stable process together with the most advanced digital servo controlling technology.
High Efficiency and Economy

Superior RF Discharge Excitation and High-Efficiency Turbo Blower

Using RF discharge excitation has brought about improved oscillation efficiency as well as output power stability. It also produces safety of operation due to low discharge voltage and high reliability due to non-contamination of laser gas which is possible only by adopting the external electrode structure as in **FANUC LASER C series**. The RF discharge excitation, stable and uniform one by nature, produces excellent pulsing characteristics. The transistorization using high power MOSFET, the first achievement at this power level, has also improved reliability.

FANUC LASER C series are equipped with high speed rotation Turbo Blower to achieve fast laser gas circulation. Turbo blower design is optimized by use of FANUC Built-in Spindle Motor. Precise tuning of rotator and strict inspections enabled high speed rotation, and thus realizing the light weight, compact and large capacity Turbo Blower.

Power Saving Functions

During laser idle time, such as exchanging works, designing layout, and press processing on turret punch press machine, electric power consumption becomes lower by moving into the power saving states, in which laser power supplies and turbo blowers of laser oscillator are controlled in power saving conditions.

Two power saving states are available. One is Eco Power Saving state, in which electric power consumption is dramatically saved and the other is Quick Power Saving state, in which laser cutting can be restarted quickly. Therefore, according to the customers’ choices, electric power consumption will be saved with these power saving functions. Assuming a cutting ratio of 50%, the effect of the power saving is about 20% with Power Saving Functions.
Superior Control Functions

Direct Oscillator Control by CNC

A CNC unit can be connected directly to control the laser oscillator. The CNC unit constantly checks the status of the laser oscillator during operation from startup to termination and automatically keeps the oscillator ready with the optimum operating conditions. The CNC unit also automatically controls other parameters that affect beam output, such as laser gas pressure.

In \textit{\textbf{C-Model C}}, the enhancement of oscillator control sequence enabled to reduce the start-up time and shut down time of oscillator by half to the conventional model. \textit{\textbf{C-Model C}} will contribute to increase the utilization rates of the laser cutting machine.

Minute Laser Output Control and Calibration Function

Stable minute laser output, which is needed for laser marking, is achieved with enhanced control of laser power supplies.

In addition, Calibration Function for minute laser output realizes stable laser marking process over long periods, not to be affected by change of oscillator condition or exchange of mirrors.

Power Consumption Monitor

CNC always monitors the condition of the laser oscillator, and outputs estimated power consumption value. Using this power consumption value, the laser machine can display the total power consumption and the utilization rate of the laser machine, which will support the users to reduce the power consumption by their programming.

Laser Cutting Condition Control

Full automatic process is provided by programming, including automatic shutter open/close, output beam on/off, assist gas start/stop, output power, and pulse output (frequency and duty).

In addition, the commanded laser output value, pulse frequency, pulse duty and actual output power value are displayed on the CNC screen.
High-Speed High-Precision Cutting

Nano Smoothing
For laser cutting with a free-form curve, since a curve becomes a polygon when a machining program is specified with linear interpolation, an unnatural winding point could be made on the finished cut edge. “Nano Smoothing” estimates a desired path within the tolerance with NURBS curves using a minute line segment command point sequence created by a CAD/CAM system and interpolates the generated NURBS curves in nanometers. This technology gives a smooth machined surface approximate to the designed figure and reduces manual finishing processes.

High-Speed High-Precision Cutting Function
Extreme high-precision synchronization between axis command and beam on/off command is realized. In high speed cutting, deviation between cutting head position and beam on/off command increases. The function minimizes the deviation sufficiently smaller than the beam spot size.

Enhancement of Pulse Frequency
The maximum command frequency of laser power has been enhanced from 2,000Hz to 32,767Hz. Enhancement of pulse frequency is effective in the improvement of the cut edge quality and decreasing dross.

Edge Cutting Function
On detection of sharp angles in the cut path, automatic acceleration/deceleration is performed with appropriate cutting condition, thus enabling sharp-edge cutting.
Tuning for Dedicated System

Nano CNC System
High-precision cutting Achieved by Coordination between “High-Precision Operation in Nanometers” and “State-of-the-Art Servo Technology” Nano interpolation that computes position commands for the digital servo control unit in nanometers, SERVO HRV Control and SPINDLE HRV Control for which the control cycle is made faster, and FANUC AC SERVO MOTOR with a high-resolution pulse coder are used as standard and make up “Nano CNC System,” which achieves high-speed, high-precision cutting.

C Language Executor
Machine tool builders can create their own operation screens.
- C language is used ANSI functions and CNC and PMC functions for programming.
- High-level tasks to which high execution priority is assigned can monitor signal.

Real-Time Custom Macro
Signals and peripheral axes can be controlled from machining programs.
- A macro statement can be executed in real time in synchronization with a machining program.
- Signals can be input and output by using DI/DO variables.
- Operation that the signal status is used as a trigger can simply be created.
- Macro variables can dynamically be read and written.
- Operation that position information of a system variable is used as a trigger can be created.
- Multiple real-time macro statements can be executed concurrently.
- Peripheral axis control can be written in the same program during machining.

Personal Computer Function
The best combination between a CNC and personal computer is realized by transferring bulk data via an original high-speed interface. Unique dedicated applications can be realized easily by personal computer function, and the machine tools can meet special needs for machine tool customers.

Feature
Various commercially application software and hardware are available

Application
Best fit for flexibility with computer applications, such as tool file management by utilizing database

OS
Windows® XP Embedded
Highly Reliable Design

High Reliability

The thermal deformation of the resonator is suppressed by using low thermal expansion material. The indirect cooling structure exhibits excellent corrosion resistance. The ceramic coating and external electrode structure are adopted to the discharge tubes, in order to protect them mechanically and to decrease the contamination into the laser gas. The laser power supply is all-solid-state type using the latest MOSFETs. All these factors contribute to the high reliability.

Easy Maintenance

The history of power compensation coefficient, current/voltage of laser power supplies, status of laser, and run hour/maintenance time of fundamental parts are displayed on the CNC screen. The Automatic Leakage Check Function exhausts the resonator chamber to vacuum and displays the change of inside pressure over time. The Automatic Power Supply Adjustment Function automates the adjustment after replacement of laser power supplies. After the laser is turned on, decrease of output power is always monitored. When it exceeds a certain preset level, a warning is displayed on the CNC screen to urge mirror cleaning. In addition, newest techniques such as the oil mist decomposition element, dust collection unit and so on, have reduced the frequency of mirror cleaning interval and the high-precision-machined mirror stage has simplified mirror adjustment.

High Safety

FANUC LASER C series products comply with the EC directive (CE Marking) and U.S. standards (FDA) under the laser radiation control for health and safety that apply to manufacturers of laser products. Warning labels and certification label such as the ones shown down side are affixed permanently on each laser product. Using RF discharge excitation produces safety of operation due to low discharge voltage and skin effect by RF current.
Utility Plan for the Object

Corresponding to the cutting materials and thicknesses, laser models can be selected to achieve the best cutting performance. (Cutting performance of the laser machine might be limited depending on its configuration.)

<table>
<thead>
<tr>
<th></th>
<th>Mild steel</th>
<th>Stainless steel</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1000i-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600mm/min 4.5mmthk</td>
<td>2600mm/min 2mmthk</td>
<td>4000mm/min 1mmthk</td>
</tr>
<tr>
<td>C2000i-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400mm/min 6mmthk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4000i-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000mm/min 6mmthk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6000i-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400mm/min 12mmthk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications

Standard specification of laser oscillator

<table>
<thead>
<tr>
<th>Items</th>
<th>C1000i-C</th>
<th>C2000i-C</th>
<th>C4000i-C</th>
<th>C6000i-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical path length</td>
<td>Short</td>
<td>Long</td>
<td>Short</td>
<td>Long</td>
</tr>
<tr>
<td>System principle</td>
<td>RF discharge excitation fast axial gas flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Integrated type (Note1) (oscillator and power supply)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser rated output (W)</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
</tr>
<tr>
<td>Laser maximum output (W)</td>
<td>1000</td>
<td>2500</td>
<td>4000</td>
<td>6000</td>
</tr>
<tr>
<td>Pulse peak power (W)</td>
<td>1000</td>
<td>2700 (Note 2)</td>
<td>4000</td>
<td>7000 (Note 2)</td>
</tr>
<tr>
<td>Output stability</td>
<td>±1% (Note 3)</td>
<td>±2% (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser wavelength</td>
<td>10.6 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam mode</td>
<td>Low order mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam diameter at exit (mm)</td>
<td>< φ 20</td>
<td>< φ 24</td>
<td>< φ 24</td>
<td>< φ 24</td>
</tr>
<tr>
<td>Polarization</td>
<td>45° linear</td>
<td>Circular</td>
<td>90° linear</td>
<td></td>
</tr>
<tr>
<td>Beam divergence angle (full angle)</td>
<td>2mrad or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse frequency</td>
<td>5 to 32767Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse duty</td>
<td>0 to 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser gas (Note 4)</td>
<td>Gas A</td>
<td>Gas B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas consumption rate (l/h)</td>
<td>Approx. 10</td>
<td>Approx. 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water rate (l/min.)</td>
<td>40</td>
<td>75</td>
<td>160</td>
<td>250</td>
</tr>
<tr>
<td>Circulated water pressure</td>
<td></td>
<td>0.5MPa or less gauge pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature stability</td>
<td>20 to 30°C/±1°C</td>
<td>20 to 30°C/±2°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended cooling capacity (kW)</td>
<td>11</td>
<td>22</td>
<td>44</td>
<td>66</td>
</tr>
<tr>
<td>Input power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC200V+10%, -15% 50/60Hz±1Hz or AC220V+10%, -15% 60Hz±1Hz or AC230V+5%, -10% 60Hz±1Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply capacity (kVA)</td>
<td>18</td>
<td>33</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>350</td>
<td>30 (pump)</td>
<td>700</td>
<td>900</td>
</tr>
</tbody>
</table>

Note 1) In **C1000i-C**, the vacuum pump is placed outside of the main unit.
Note 2) Within limited pulse duty
Note 3) At rated power with laser power feedback during 8 hours.
Note 4) Gas A /Pre-mixed gas of CO₂:N₂:He (volume ratio, N₂ balance) 5:55:40% ±5% or less for each composition
Gas B /Pre-mixed gas of CO₂:N₂:He (volume ratio, He balance) 5:35:60% ±5% or less for each composition
FANUC Training Center

FANUC Training Center operates training courses for daily, periodic, and preventive maintenance including mirror cleaning procedure of CO2 laser oscillator.

Inquiries: Yamanakako-mura, Yamanashi, Japan 401-0501
Phone: 81-555-84-6030
Fax: 81-555-84-5540

FANUC CORPORATION

- America
 FANUC FA AMERICA CORPORATION
 FANUC FA Brazil Ltda
 FANUC Puerto Rico Corporation

- Europe, the middle east and Africa
 FANUC Luxembourg Corporation, S.A.
 FANUC FA Deutschland GmbH
 FANUC FA France
 FANUC FA UK Ltd.
 FANUC FA Italia S.r.l.
 FANUC FA Iberia S.A.
 FANUC FA Satys ve Servis Tic. Ltd. Sti.
 FANUC FA Bulgaria Ltd.
 FANUC FA Czechs r.o.
 FANUC FA Hungary Ltd.
 FANUC SOUTH AFRICA (PTY) LIMITED
 FANUC AUTOMATION LLC

- Asia and Oceania
 FANUC Korea Corporation
 FANUC Taiwan Limited
 FANUC SHENZHEN LIMITED
 FANUC Singapore Pte. Ltd.
 FANUC Vietnam Limited

Headquarters: Oshino-mura, Yamanashi 401-0597, Japan
Phone: 81-555-84-5555 Fax: 81-555-84-5512 http://www.fanuc.co.jp

All specifications are subject to change without notice.
No part of this catalog may be reproduced in any form.
The products in this catalog are controlled based on Japan’s "Foreign Exchange and Foreign Trade Law". The export of Series 30i-LB from Japan is subject to an export License by the government of Japan. Other models in this catalogue may also be subject to export controls.

Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by pre-export regulations of the United States government.
Should you wish to export or re-export these products, please contact FANUC for advice.