

ЗАЩИТА СЕТИ

ОБЩАЯ ИНФОРМАЦИЯ

Страница **2**

■ ПОЗНАКОМЬТЕСЬ С ПРОДУКЦИЕЙ SCHRACK TECHNIK

Высококачественная продукция, использование технического опыта с учетом индивидуальных требований наших высоко ценимых заказчиков являются приоритетами нашей компании. От систем электроснабжения до приборов контроля индивидуальной электрической нагрузки, изделия Schrack характеризуются безотказным функционированием и высокой безопасностью как для обслуживающего персонала, так и для подключенного оборудования.

РАЗРАБОТКА ПРОЕКТОВ – ПОЛНОМАСШТАБНОЕ РЕШЕНИЕ

SCHRACK TECHNIK является лидером в области технологий энергоснабжения и обработки данных. Мы предлагаем адаптированные и скоординированные системы и решения для частных, коммерческих и промышленных областей применения.

Благодаря многолетнему опыту, участию в процессах стандартизации и ряде комиссий различного назначения, мы можем предоставить вам информацию о новейших технологических разработках и способах получения максимального эффекта от инвестиций в технологии монтажа электрооборудования.

Наши квалифицированные специалисты окажут вам поддержку в выборе нужной технологии, планировании и реализации проекта.

ТЕХНОЛОГИИ ЭНЕРГЕТИЧЕСКОЙ ОТРАСЛИ

ЭЛЕКТРИЧЕСКИЕ РАСПРЕДЕЛИТЕЛЬНЫЕ КОРОБКИ И ШКАФЫ, МОДУЛЬНЫЕ ЗАЩИТНЫЕ УСТРОЙСТВА МОДУЛЬНЫЕ КОНТРОЛЛЕРЫ, ПЕРЕКЛЮЧАТЕЛИ, ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ, ТЕХНОЛОГИЯ СОЕДИНЕНИЙ И ПРОКЛАДКИ КАБЕЛЕЙ

ДЛЯ ПРОМЫШЛЕННОСТИ И МОНТАЖА РАСПРЕДЕЛИТЕЛЬНЫХ ЩИТОВ В ЗДАНИЯХ

РЕЛЕ, ПРЕОБРАЗОВАТЕЛИ, СЧЕТЧИКИ И ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ АВТОМАТЫ ЗАЩИТЫ СЕТИ И ВЫКЛЮЧАТЕЛИ-РАЗЪЕДИНИТЕЛИ, КОНТАКТОРЫ И КОНТАКТОРЫ ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕТЕВЫЕ ВЫКЛЮЧАТЕЛИ, БЛОКИ УПРАВЛЕНИЯ

ТЕХНОЛОГИЯ МОНТАЖА ЗДАНИЙ

ВЫКЛЮЧАТЕЛИ И РОЗЕТКИ, МАТЕРИАЛЫ ДЛЯ МОНТАЖА ТЕХНОЛОГИЯ МОНТАЖА СИСТЕМ ЗДАНИЙ И СИСТЕМ КОНТРОЛЯ ДОСТУПА

АВАРИЙНОЕ ОСВЕЩЕНИЕ И СИСТЕМЫ

АВАРИЙНОГО ОСВЕЩЕНИЯ СИСТЕМЫ БЕСПЕРЕБОЙНОГО ПИТАНИЯ КОМПЕНСАЦИОННЫЕ СИСТЕМЫ И СИСТЕМЫ ОБНАРУЖЕНИЯ СО

СЕТЕВАЯ ТЕХНОЛОГИЯ

ПРОКЛАДКА МЕДНЫХ И ОПТОВОЛОКОННЫХ КАБЕЛЕЙ АКТИВНЫЕ КОМПОНЕНТЫ, ТЕЛЕКОММУНИКАЦИОННЫЕ ШКАФЫ ПРОКЛАДКА КАБЕЛЕЙ ДЛЯ ЦЕНТРОВ ОБРАБОТКИ ДАННЫХ

КАБЕЛИ И СОЕДИНЕНИЯ

ПВХ-, ОДНОЖИЛЬНЫЕ, ЭКРАНИРОВАННЫЕ, БРОНИРОВАННЫЕ КАБЕЛИ ПВХ-ЛИНИИ УПРАВЛЕНИЯ, КАБЕЛИ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ И ПОЖАРНОЙ СИГНАЛИЗАЦИИ СИЛЬНОТОЧНЫЕ КАБЕЛИ, КОАКСИАЛЬНЫЕ КАБЕЛИ, ПРОМЫШЛЕННЫЕ КАБЕЛИ, ЭЛЕКТРОННЫЕ КАБЕЛИ

ТЕХНОЛОГИЯ ОСВЕЩЕНИЯ

ВНУТРЕННЕЕ И НАРУЖНОЕ ОСВЕЩЕНИЕ ТЕХНИЧЕСКОЕ ОСВЕЩЕНИЕ, ДЕКОРАТИВНОЕ ОСВЕЩЕНИЕ СПЕЦИАЛЬНОЕ ОСВЕЩЕНИЕ, ЛАМПЫ

Р ОБЩАЯ ИНФОРМАЦИЯ

- Все габаритные чертежи приведены исключительно для наглядности и уменьшены до размеров свободного места на странице.
- Все электрические схемы представляют собой схематическую иллюстрацию соединений, приведенную для лучшего понимания конкретной функции, и их необходимо будет редактировать/добавлять в ходе разработки проекта.
- Все изображения показывают пример конкретного изделия и приведены исключительно в информационных целях.

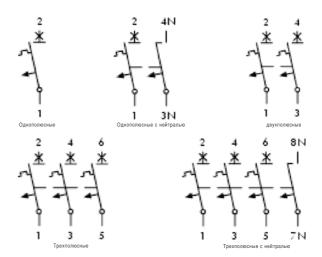
Если не указано иное, применяются требования документа "Общие условия поставки Ассоциации австрийских электрических и электронных промышленных компаний (FEEI)" в его последней редакции. Мы не несем ответственности за ошибки в тексте, типе или изображениях и оставляем за собой право вносить изменения в технические характеристики ассортимента нашей продукции. Информация для пользователя, содержащаяся в данном каталоге, отражает мнение компании на момент составления каталога. В ее основу вошли опубликованные стандарты, профессиональная документация и опыт самостоятельно проведенных разработок. Данные сведения несут сугубо информативную функцию и не имеют силу закона.

СОДЕРЖАНИЕ

Страница **3**

7	МСВ (МИНИАТЮРНЫЕ АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ)	
	МСВ – СЕРИЯ ВМ 4,5 кА	Страница 4
	МСВ – СЕРИЯ ВМ 6 кА	Страница 6
	МСВ – СЕРИЯ ВМ 10 кА	Страница 8
	МСВ – ОДНОПОЛЮСНЫЕ С НЕЙТРАЛЬЮ СЕРИЯ BS 4,5 кА / 6 кА	Страница 10
	MCB – СЕРИЯ BMS0-DC	Страница 11
	МСВ — СИЛЬНОТОЧНЫЕ, СЕРИЯ ВК 15-25 кА	Страница 12
7	RCBO (ДИФФЕРЕНЦИАЛЬНЫЕ АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ)	
	RCBO – ОБЪЕДИНЕНИЕ СЕРИЙ МСВ И RCCB, LS-FI	Страница 13
	ОДНОМОДУЛЬНЫЕ, СЕРИЯ RCBO, LS-DI/PT	Страница 14
•	RCCBS (ДИСТАНЦИОННО УПРАВЛЯЕМЫЕ АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ) (ДИСТАНЦИОННО УПРАВЛЯЕМЫЕ АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ)	
	RCCBS – ДОПОЛНИТЕЛЬНЫЙ БЛОК ОСТАТОЧНОГО ТОКА, СЕРИЯ ВВ	Страница 15
7	RCCB (ДИСТАНЦИОННО УПРАВЛЯЕМЫЕ АВТОМАТИЧЕСКИЕ	
	ВЫКЛЮЧАТЕЛИ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ)	
	RCCB – АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ ОСТАТОЧНОГО ТОКА, СЕРИЯ ВС	Страница 16
_	MORVEL III IE MOORGTORI I	
	МОДУЛЬНЫЕ ИЗОЛЯТОРЫ модульные изоляторы – серия вz	Страница 17
	МОДУЛЬНЫЕ ИЗОЛЯТОРЫ – СЕРИЯ В2	<u>Страница 17</u>
7	КОМПЛЕКТУЮЩИЕ ДЛЯ МСВ, RCBO И RCCB	
	ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ ДЛЯ УПРАВЛЕНИЯ	Страница 18
	ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ/КОНТАКТ СИГНАЛА ОТКЛЮЧЕНИЯ	Страница 18
	ЗАЩИТНАЯ НАКЛАДКА IP 20 ДЛЯ СЕРИИ BS	Страница 18
	ДИСТАНЦИОННОЕ РАЗМЫКАНИЕ	Страница 19
	РАЗМЫКАНИЕ ПРИ ПОНИЖЕННОМ НАПРЯЖЕНИИ	Страница 19
7	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
	РАЗМЕРЫ / ЗАВИСИМЫЕ ХАРАКТЕРИСТИКИ РЕЛЕЙНОЙ ЗАЩИТЫ / ДОПУСТИМАЯ НАГРУЗКА /	Страница 20
	ВОЗДЕЙСТВИЕ ВНЕШНЕЙ ТЕМПЕРАТУРЫ НА ФУНКЦИЮ ТЕПЛОВОГО ОТКЛЮЧЕНИЯ /	
	ВОЗДЕЙСТВИЕ ЧАСТОТЫ ТОКА В СЕТИ / МАКСИМАЛЬНАЯ СКВОЗНАЯ ЭНЕРГИЯ /	
	ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ	

MCB


Страница **4**

■ МСВ – СЕРИЯ ВМ 4,5 кА

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальное напряжение/частота: 230 В/400 В перем. тока 50/60 Гц, 240 В/415 В перем. тока 50/60 Гц в модели МЕ
- Номинальная отключающая способность: 4,5 кА по стандарту IEC/EN 60 898
- Номинальная отключающая способность пост. тока: макс. 48 В на один полюс
- Зависимые характеристики релейной защиты: B, C по стандарту EN 60 898
- Резервный предохранитель: макс. 80 A gG (>45 кA)
- Температура отключения: от -5°C до +40°C
- Температура эксплуатации: от -40 °C до +75 °C
- Окружающая температура: +50 °С для типа МЕ

- Класс избирательности: 3
- Уровень защиты: IP20
- Рабочий ресурс: > 8000 циклов эксплуатации
- Окошко с индикатором положения контакта (красный/зеленый для каждого полюса)
- Емкость выводов: 1 мм² 25 мм² (кроме однополюсных с нейтралью)
- Возможность дополнительного соединения блочной системы сборной шины
- Установка на DIN-рейке (стандарт EN 50 022)
- Безопасность при касании пальцем/рукой в соответствии с BVG аз/OVE-EN 6

ОДНОПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
6 A	BM418106	BM417106	-	BM417106ME
10 A	BM418110	BM417110	-	BM417110ME
16 A	BM418116	BM417116	-	BM417116ME
20 A	BM418120	BM417120	-	BM417120ME
25 A	BM418125	BM417125	-	BM417125ME
32 A	BM418132	BM417132	-	BM417132ME
40 A	BM418140	BM417140	-	BM417140ME
50 A	-	BM417150	-	-
63 A	-	BM417163	-	-

✓ ОДНОПОЛЮСНЫЕ + НЕЙТРАЛЬ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
6 A	BM418606	BM417606	-	-
10 A	BM418610	BM417610	-	-
16 A	BM418616	BM417616	-	-
20 A	BM418620	BM417620	-	-
25 A	BM418625	BM417625	-	-
32 A	BM418632	BM417632	-	-
40 A	BM418640	BM417640	-	-
50 A	-	BM417650	-	-
63 A	-	BM417663	-	-

MCB

Страница

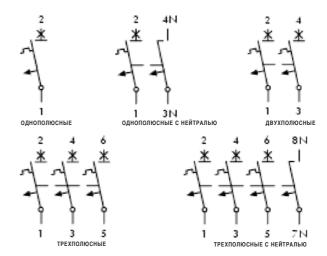
■ МСВ – СЕРИЯ ВМ 4,5 КА – продолжение

ДВУХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
6 A	BM418206	BM417206	-	BM417206ME
10 A	BM418210	BM417210	-	BM417210ME
16 A	BM418216	BM417216	-	BM417216ME
20 A	BM418220	BM417220	-	BM417220ME
25 A	BM418225	BM417225	-	BM417225ME
32 A	BM418232	BM417232	-	BM417232ME
40 A	BM418240	BM417240	-	BM417240ME
50 A	-	BM417250	-	-
63 A	-	BM417263	=	-

ТРЕХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
6 A	BM418306	BM417306	-	BM417306ME
10 A	BM418310	BM417310	-	BM417310ME
16 A	BM418316	BM417316	-	BM417316ME
20 A	BM418320	BM417320	-	BM417320ME
25 A	BM418325	BM417325	-	BM417325ME
32 A	BM418332	BM417332	-	BM417332ME
40 A	BM418340	BM417340	-	BM417340ME
50 A	-	BM417350	-	-
63 A	-	BM417363	-	-


ТРЕХПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
6 A	BM418806	BM417806	-	BM417806ME
10 A	BM418810	BM417810	-	BM417810ME
16 A	BM418816	BM417816	-	BM417816ME
20 A	BM418820	BM417820	-	BM417820ME
25 A	BM418825	BM417825	-	BM417825ME
32 A	BM418832	BM417832	-	BM417832ME
40 A	BM418840	BM417840	=	BM417840ME
50 A	-	BM417850	-	-
63 A	-	BM417863	-	-

■ МСВ – СЕРИЯ ВМ 6 кА

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальное напряжение/частота: 230 В/400 В перем. тока 50/60 Гц, 240 В/415 В перем. тока 50/60 Гц в модели МЕ
- Номинальная отключающая способность: 6 кА по стандарту IEC/EN 60 898, 10 кА по стандарту IEC/EN 60 947-2
- Номинальная отключающая способность пост. тока: макс. 48 В на один полюс
- Зависимые характеристики релейной защиты: B, C по стандарту EN 60 898
- Резервный предохранитель: макс. 100 A gG (>10 кA)
- Температура отключения: от -5°C до +40°C
- Температура эксплуатации: от -40 °C до +75 °C

- Окружающая температура: +50 °C для типа МЕ
- Класс избирательности: 3
- Уровень защиты: IP20
- Рабочий ресурс: > 8000 циклов эксплуатации
- Окошко с индикатором положения контакта (красный/зеленый для каждого полюса)
- Емкость выводов: 1 мм² 25 мм²
- Возможность дополнительного соединения блочной системы сборной шины
- Установка на DIN-рейке (стандарт EN 50 022)
- Безопасность при касании пальцем/рукой в соответствии с BVG A3/OVE-EN 6

ОДНОПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM617102	-	BM617102ME
4 A	-	BM617104	-	BM617104ME
6 A	BM618106	BM617106	-	BM617106ME
10 A	BM618110	BM617110	-	BM617110ME
16 A	BM618116	BM617116	-	BM617116ME
20 A	BM618120	BM617120	-	BM617120ME
25 A	BM618125	BM617125	-	BM617125ME
32 A	BM618132	BM617132	-	BM617132ME
40 A	BM618140	BM617140	-	BM617140ME
50 A	BM618150	BM617150	-	BM617150ME
63 A	BM618163	BM617163	-	BM617163ME

ОДНОПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM617602	-	-
4 A	-	BM617604	-	-
6 A	BM618606	BM617606	=	=
10 A	BM618610	BM617610	-	-
16 A	BM618616	BM617616	-	-
20 A	BM618620	BM617620	-	-
25 A	BM618625	BM617625	=	=
32 A	BM618632	BM617632	-	-
40 A	BM618640	BM617640	-	-
50 A	-	BM617650	-	-
63 A	-	BM617663	-	-

■ МСВ – СЕРИЯ ВМ 6 кА – продолжение

ДВУХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM617202	-	BM617202ME
4 A	-	BM617204	-	BM617204ME
6 A	BM618206	BM617206	-	BM617206ME
10 A	BM618210	BM617210	-	BM617210ME
16 A	BM618216	BM617216	-	BM617216ME
20 A	BM618220	BM617220	-	BM617220ME
25 A	BM618225	BM617225	-	BM617225ME
32 A	BM618232	BM617232	-	BM617232ME
40 A	BM618240	BM617240	-	BM617240ME
50 A	BM618250	BM617250	-	BM617250ME
63 A	BM618263	BM617263	-	BM617263ME

ТРЕХПОЛЮСНЫЕ

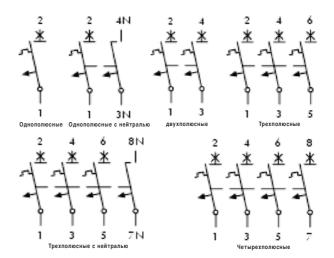
НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM617302	-	BM617302ME
4 A	-	BM617304	-	BM617304ME
6 A	BM618306	BM617306	=	BM617306ME
10 A	BM618310	BM617310	-	BM617310ME
16 A	BM618316	BM617316	-	BM617316ME
20 A	BM618320	BM617320	-	BM617320ME
25 A	BM618325	BM617325	=	BM617325ME
32 A	BM618332	BM617332	-	BM617332ME
40 A	BM618340	BM617340	-	BM617340ME
50 A	BM618350	BM617350	-	BM617350ME
63 A	BM618363	BM617363	-	BM617363ME

▼ ТРЕХПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ ТОК Т	ГИП В / РАСЧ. ТЕМП. 300С	ТИП C / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A –	-	BM617802	-	BM617802ME
4 A -	-	BM617804	-	BM617804ME
6 A E	BM618806	BM617806	-	BM617806ME
10 A	BM618810	BM617810	-	BM617810ME
16 A E	BM618816	BM617816	-	BM617816ME
20 A E	BM618820	BM617820	-	BM617820ME
25 A E	BM618825	BM617825	-	BM617825ME
32 A E	BM618832	BM617832	-	BM617832ME
40 A	BM618840	BM617840	-	BM617840ME
50 A E	BM618850	BM617850	-	BM617850ME
63 A E	BM618863	BM617863	-	BM617863ME

ЧЕТЫРЕХПОЛЮСНЫЕ

- ILIBII EXIIONI	- IETBII EXTIONIOUTBIE					
НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C		
2 A	-	-	-	_		
4 A	-	-	-	-		
6 A	-	BM617406	-	-		
10 A	-	BM617410	-	-		
16 A	-	BM617416	-	-		
20 A	-	BM617420	-	-		
25 A	-	BM617425	-	=		
32 A	-	BM617432	-	-		
40 A	-	BM617440	-	-		
50 A	-	BM617450	-	-		
63 A	-	BM617463	-	_		



■ МСВ – СЕРИЯ ВМ 10 кА

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальное напряжение/частота: 230 В/400 В перем. тока 50/60 Гц
- Номинальная отключающая способность: 10 кА по стандарту IEC/EN 60 898, 15 кА по стандарту IEC/EN 60 947-2
- Номинальная отключающая способность пост. тока: макс. 48 В на один полюс
- Зависимые характеристики релейной защиты: B, C, D по стандарту EN 60 898
- Резервный предохранитель: макс. 100 A gG (>10 кA)
- Температура отключения: от -5°C до +40°C
- Температура эксплуатации: от -40 °C до +75 °C
- Окружающая температура: +50 °C для типа МЕ

- Класс избирательности: 3
- Уровень защиты: IP20
- Рабочий ресурс: > 8000 циклов эксплуатации
- Окошко с индикатором положения контакта (красный/зеленый для каждого полюса)
- Емкость выводов: 1 мм² 25 мм² (кроме однополюсных с нейтралью)
- Возможность дополнительного соединения блочной системы сборной шины
- Установка на DIN-рейке (стандарт EN 50 022)
- Безопасность при касании пальцем/рукой в соответствии с BVG A3/OVE-EN 6

ОДНОПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM017102	BM019102	BM017102ME
4 A	-	BM017104	BM019104	BM017104ME
6 A	BM018106	BM017106	BM019106	BM017106ME
10 A	BM018110	BM017110	BM019110	BM017110ME
16 A	BM018116	BM017116	BM019116	BM017116ME
20 A	BM018120	BM017120	BM019120	BM017120ME
25 A	BM018125	BM017125	BM019125	BM017125ME
32 A	BM018132	BM017132	BM019132	BM017132ME
40 A	BM018140	BM017140	BM019140	BM017140ME
50 A	BM018150	BM017150	-	BM017150ME
63 A	BM018163	BM017163	-	BM017163ME

■ ОДНОПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	BM018602	BM017602	-	_
4 A	BM018604	BM017604	-	-
6 A	BM018606	BM017606	-	-
10 A	BM018610	BM017610	-	-
16 A	BM018616	BM017616	-	-
20 A	BM018620	BM017620	-	-
25 A	BM018625	BM017625	-	-
32 A	BM018632	BM017632	-	-
40 A	BM018640	BM017640	-	-
50 A	BM018650	BM017650	-	-
63 A	BM018663	BM017663	-	_

■ МСВ – СЕРИЯ ВМ 10 кА – продолжение

/ ДВУХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300C	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM017202	BM019202	BM017202ME
4 A	-	BM017204	BM019204	BM017204ME
6 A	BM018206	BM017206	BM019206	BM017206ME
10 A	BM018210	BM017210	BM019210	BM017210ME
16 A	BM018216	BM017216	BM019216	BM017216ME
20 A	BM018220	BM017220	BM019220	BM017220ME
25 A	BM018225	BM017225	BM019225	BM017225ME
32 A	BM018232	BM017232	BM019232	BM017232ME
40 A	BM018240	BM017240	BM019240	BM017240ME
50 A	BM018250	BM017250	-	BM017250ME
63 A	BM018263	BM017263	-	BM017263ME

■ ТРЕХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM017302	BM019302	BM017302ME
4 A	-	BM017304	BM019304	BM017304ME
6 A	BM018306	BM017306	BM019306	BM017306ME
10 A	BM018310	BM017310	BM019310	BM017310ME
16 A	BM018316	BM017316	BM019316	BM017316ME
20 A	BM018320	BM017320	BM019320	BM017320ME
25 A	BM018325	BM017325	BM019325	BM017325ME
32 A	BM018332	BM017332	BM019332	BM017332ME
40 A	BM018340	BM017340	BM019340	BM017340ME
50 A	BM018350	BM017350	-	BM017350ME
63 A	BM018363	BM017363	-	BM017363ME

▼ ТРЕХПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	BM017802	BM019802	BM017802ME
4 A	-	BM017804	BM019804	BM017804ME
6 A	BM018806	BM017806	BM019806	BM017806ME
10 A	BM018810	BM017810	BM019810	BM017810ME
16 A	BM018816	BM017816	BM019816	BM017816ME
20 A	BM018820	BM017820	BM019820	BM017820ME
25 A	BM018825	BM017825	BM019825	BM017825ME
32 A	BM018832	BM017832	BM019832	BM017832ME
40 A	BM018840	BM017840	BM019840	BM017840ME
50 A	BM018850	BM017850	-	BM017850ME
63 A	BM018863	BM017863	-	BM017863ME

ЧЕТЫРЕХПОЛЮСНЫЕ

- IETBIL EXTENDED				
НОМИНАЛЬНЫЙ ТОК	ТИП В / РАСЧ. ТЕМП. 300С	ТИП С / РАСЧ. ТЕМП. 300С	ТИП D / РАСЧ. ТЕМП. 300C	ТИП D / РАСЧ. ТЕМП. 400C
2 A	-	-	-	-
4 A	-	-	-	-
6 A	-	BM017406	BM019406	-
10 A	-	BM017410	BM019410	-
16 A	-	BM017416	BM019416	-
20 A	-	BM017420	BM019420	-
25 A	-	BM017425	BM019425	-
32 A	-	BM017432	BM019432	-
40 A	-	BM017440	BM019440	-
50 A	-	BM017450	-	_
63 A	-	BM017463	-	-

MCB

Страница **10**

■ МСВ – ОДНОПОЛЮСНЫЕ С НЕЙТРАЛЬЮ СЕРИЯ ВЅ 4,5 кА / 6 кА

■ ДАННЫЕ КОМПАНИИ SCHRACK

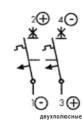
- Номинальное напряжение/частота: 230 В перем. тока, 50/60 Гц
- Номинальная отключающая способность: 4,5 кА по стандарту IEC/EN 60 898
 6 кА по стандарту IEC/EN 60 898
- Номинальная отключающая способность пост. тока: макс. 48 В
- Зависимые характеристики релейной защиты: B, C по стандарту EN 60 898
- Резервный предохранитель: 4,5 кА тип макс. 80 A gG (>4,5 кА)
 6 кА тип макс. 100 A gG (>10 кА)
- Температура отключения: от -5°C до +40°C
- Температура эксплуатации: от -40 °C до +75 °C
- Класс избирательности: 3
- Уровень защиты: IP20
- Рабочий ресурс: > 8000 циклов эксплуатации
- Окошко с индикатором положения контакта (красн./зелен.)
- Емкость выводов: 1 мм² 16 мм²
- Возможность дополнительного соединения блочной системы сборной шины
- Установка на DIN-рейке (стандарт EN 50 022)
- Безопасность при касании пальцем/рукой в соответствии с BVG A3/OVE-EN 6

4,5 κA

НОМИНАЛЬНЫЙ	ТИП В	тип с
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
2 A	-	BS417502
4 A	-	BS417504
6 A	BS418506	BS417506
10 A	BS418510	BS417510
16 A	BS418516	BS417516
20 A	BS418520	BS417520
25 A	BS418525	BS417525
32 A	BS418532	BS417532
40 A	BS418540	BS417540

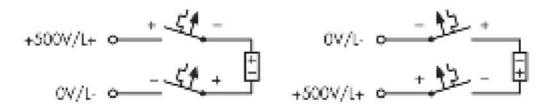
6 κA

НОМИНАЛЬНЫЙ	ТИП В	тип с
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
2 A	-	BS017502
4 A	-	BS017504
6 A	BS018506	BS017506
10 A	BS018510	BS017510
16 A	BS018516	BS017516
20 A	BS018520	BS017520
25 A	BS018525	BS017525
32 A	BS018532	BS017532
40 A	BS018540	BS017540



Страница **11**

■ МСВ – СЕРИЯ ВМЅО-DС



Пример соединения 250 В, один полюс

Пример соединения 500 В, два полюса

■ ДАННЫЕ КОМПАНИИ SCHRACK

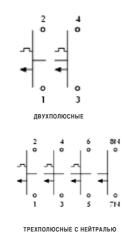
- Номинальное напряжение: 220 В пост. тока на полюс; Т = 4 мс
- Коммутационная способность: 6 кА по стандарту IEC/EN 60898
- Резервный предохранитель, макс.: 100 A gL
- Зависимые характеристики релейной защиты: С
- Емкость выводов: 1-25 мм²
- Соблюдайте полярность
- Предназначены для применения в системах постоянного тока

ОДНОПОЛЮСНЫЕ

- ognonomonal			
НОМИНАЛЬНЫЙ	ТИП	3AKA3 №	
TOK			
2 A	BMS0-C 2/1-DC	BM015102	
6 A	BMS0-C 6/1-DC	BM015106	
10 A	BMS0-C 10/1-DC	BM015110	
16 A	BMS0-C 16/1-DC	BM015116	
20 A	BMS0-C 20/1-DC	BM015120	
25 A	BMS0-C 25/1-DC	BM015125	
32 A	BMS0-C 32/1-DC	BM015132	
40 A	BMS0-C 40/1-DC	BM015140	
50 A	BMS0-C 50/1-DC	BM015150	

ДВУХПОЛЮСНЫЕ

Т ДВУХПОЛЮСНЫЕ				
НОМИНАЛЬНЫЙ	ТИП	3AKA3 №		
TOK				
2 A	BMS0-C 2/2-DC	BM015202		
6 A	BMS0-C 6/2-DC	BM015206		
10 A	BMS0-C 10/2-DC	BM015210		
16 A	BMS0-C 16/2-DC	BM015216		
20 A	BMS0-C 20/2-DC	BM015220		
25 A	BMS0-C 25/2-DC	BM015225		
32 A	BMS0-C 32/2-DC	BM015232		
40 A	BMS0-C 40/2-DC	BM015240		
50 A	BMS0-C 50/2-DC	BM015250		


MCB

Страница **12**

■ МСВ – СИЛЬНОТОЧНЫЕ, СЕРИЯ ВК 15-25 кА

ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальное напряжение/частота: 230 В/400 В перем. тока 50/60 Гц
- Номинальная отключающая способность: 15-25 кА согласно маркировке
- Номинальная отключающая способность пост. тока: макс. 60 В на один полюс
- Зависимые характеристики релейной защиты: С и D по стандарту EN 60 898
- Резервный предохранитель: макс. 200 A gG (>20 кA)

- Температура отключения: от -5°C до +40°C
- Уровень защиты: IP20
- Рабочий ресурс: > 20 000 циклов эксплуатации
- Окошко с индикатором положения контакта (красный/зеленый для каждого полюса)
- Емкость выводов: 2,5 мм² 50 мм²
- Контакт размыкающего переключателя с двойным разрывом
- Установка на DIN-рейке (стандарт EN 50 022)

ОДНОПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ	тип с	ТИП D
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
20 A	BR571200	BR591200
25 A	BR571250	BR591250
32 A	BR571320	BR591320
40 A	BR571400	BR591400
50 A	BR571500	BR591500
63 A	BR571630	BR591630
80 A	BR571800	BR591800
100 A	BR571910	BR591910
125 A	BR571912	-

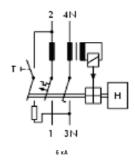
/ ДВУХПОЛЮСНЫЕ

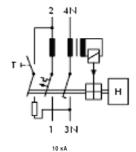
НОМИНАЛЬНЫЙ	тип с	ТИП D
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
20 A	BR572200	BR592200
25 A	BR572250	BR592250
32 A	BR572320	BR592320
40 A	BR572400	BR592400
50 A	BR572500	BR592500
63 A	BR572630	BR592630
80 A	BR572800	BR592800
100 A	BR572910	BR592910
125 A	BR572912	-

ТРЕХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ	тип с	ТИП D
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
20 A	BR573200	BR593200
25 A	BR573250	BR593250
32 A	BR573320	BR593320
40 A	BR573400	BR593400
50 A	BR573500	BR593500
63 A	BR573630	BR593630
80 A	BR573800	BR593800
100 A	BR573910	BR593910
125 A	BR573912	_

■ ТРЕХПОЛЮСНЫЕ С НЕЙТРАЛЬЮ


НОМИНАЛЬНЫЙ	тип с	ТИП D
TOK	РАСЧ. ТЕМП. 300С	РАСЧ. ТЕМП. 300С
20 A	BR578200	BR598200
25 A	BR578250	BR598250
32 A	BR578320	BR598320
40 A	BR578400	BR598400
50 A	BR578500	BR598500
63 A	BR578630	BR598630
80 A	BR578800	BR598800
100 A	BR578910	BR598910
125 A	BR578912	-



Страница **13**

■ RCBO – ОБЪЕДИНЕНИЕ СЕРИЙ МСВ И RCCB, LS-FI

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Однополюсные с отключаемой нейтралью
- Отключение не зависит от сетевого напряжения
- Время отключения: без задержки
- Номинальное напряжение/частота: 230 В/50 Гц
- Номинальный ток отключения: 30 мА, 100мА и 300мА
- Чувствительность: перем. ток 6 кА и 10 кА, пульсирующий пост. ток (только 10 кА)
- Класс избирательности: 3
- Номинальная отключающая способность: 6 кА и 10 кА по стандарту IEC/EN 61009
- Номинальный ток: 6-40 А
- Характеристика: В и С по стандарту EN 60 898

- Резервный предохранитель (от короткого замыкания), макс.: 100 A gG (>10 кA)
- Рабочий ресурс: Электрический: > 4000 циклов эксплуатации; Механический: > 20000 циклов эксплуатации
- Цветной индикатор положения контакта (красный/зеленый)
- Индикатор: синий: отключение по умолчанию; белый: отключение вручную
- Емкость выводов: 1 мм² 25 мм²
- Возможность дополнительного соединения блочной системы сборной шины
- Установка на DIN-рейке (стандарт EN 50 022)
- Безопасность при касании пальцем/рукой в соответствии с BVG A3/OVE-EN 6

6 кА − 30 мА

НОМИНАЛЬНЫЙ	ТИП В	ТИПВ	ТИПС	ТИПС
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
6 A	BO668506	BO668606	BO667506	BO667606
10 A	BO668510	BO668610	BO667510	BO667610
16 A	BO668516	BO668616	BO667516	BO667616
20 A	BO668520	BO668620	BO667520	BO667620
25 A	BO668525	BO668625	BO667525	BO667625
32 A	BO668532	BO668632	BO667532	BO667632
40 A	BO668540	BO668640	BO667540	BO667640

10 кА − 30 мА

НОМИНАЛЬНЫЙ	ТИПВ	ТИПВ	TVITC	ТИП С
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
6 A	BO618506	BO618606	BO617506	BO617606
10 A	BO618510	BO618610	BO617510	BO617610
16 A	BO618516	BO618616	BO617516	BO617616
20 A	BO618520	BO618620	BO617520	BO617620
25 A	BO618525	BO618625	BO617525	BO617625
32 A	BO618532	BO618632	BO617532	BO617632
40 A	BO618540	BO618640	BO617540	BO617640

10 кА − 100 мА

НОМИНАЛЬ	ьный типв	ТИП В	ТИП С	ТИПС
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
6 A	BO718506	_	-	-
10 A	BO718510	BO718610	BO717510	BO717610
16 A	BO718516	BO718616	BO717516	BO717616
20 A	-	BO718620	BO717520	BO717620
25 A	-	_	BO717525	-
32 A	-	-	BO717532	-
40 A	-	_	BO717540	-

■ 10 кА – 300 мА

■ 10 KA - 300 MA				
НОМИНАЛЬНЫЙ ТИП В		ТИП В	ТИП С	ТИПС
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
6 A	BO818506	BO818606	BO817506	BO817606
10 A	BO818510	BO818610	BO817510	BO817610
16 A	_	BO818616	BO817516	BO817616
20 A	-	BO818620	BO817520	BO817620
25 A	-	BO818625	BO817525	BO817625
32 A	-	BO818632	BO817532	BO817632
40 A	_	BO818640	BO817540	BO817640

RCBO

Страница **14**

■ ОДНОМОДУЛЬНЫЕ, СЕРИЯ RCBO, LS-DI/PT

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Такие же размеры и форма, как у однополюсного миниатюрного автоматического выключателя
- Номинальное напряжение/частота: 240 В, 50/60 Гц
- Номинальная отключающая способность: 6 кА
- чувствительность 30 мА (10 мА, 100 мА, 300 мА при специальном заказе)
- Индикатор положения контакта
- Класс избирательности: 3
- Класс избирательности переменного тока
- Номинальный ток: 6-40 А
- Характеристика: В и С по стандарту EN/IEC 60 898
- Класс 3 по классификации максимальной сквозной энергии
- Емкость выводов: 1 мм² 25 мм²
- Отдельный нейтральный вывод 950 мм
- Фиксируется в положениях "Вкл." и "Откл."
- Безопасность при касании клемм пальцем/рукой
- Произведено и испытано по стандарту IEC/EN 61009

6 кА − 10 мА

НОМИНАЛЬНЫЙ	ТИПВ	ТИПС
TOK	ПЕРЕМ. ТОК	ПЕРЕМ. ТОК
6 A	при специальном заказе	BI557506ME
10 A	при специальном заказе	BI557510ME
16 A	при специальном заказе	BI557516ME
20 A	при специальном заказе	BI557520ME
25 A	при специальном заказе	BI557525ME
32 A	при специальном заказе	BI557532ME
40 A	при специальном заказе	BI557540ME

■ 6 кA − 30 мA

_ 0 1071	00 11171	
НОМИНАЛЬНЫЙ	ТИП В	TVITC
TOK	ПЕРЕМ. ТОК	ПЕРЕМ. ТОК
6 A	BI658506	BI657506
10 A	BI658510	BI657510
16 A	BI658516	BI657516
20 A	BI658520	BI657520
25 A	BI658525	BI657525
32 A	BI658532	BI657532
40 A	BI658540	BI657540

■ 6 кА − 100 мА

НОМИНАЛЬНЫЙ	ТИПВ	ТИПС
TOK	ПЕРЕМ. ТОК	ПЕРЕМ. ТОК
6 A	при специальном заказе	BI757506ME
10 A	при специальном заказе	BI757510ME
16 A	при специальном заказе	BI757516ME
20 A	при специальном заказе	BI757520ME
25 A	при специальном заказе	BI757525ME
32 A	при специальном заказе	BI757532ME
40 A	при специальном заказе	BI757540ME

RCCBS

■ RCCBS – ДОПОЛНИТЕЛЬНЫЙ БЛОК ОСТАТОЧНОГО ТОКА, СЕРИЯ ВВ

■ ДАННЫЕ КОМПАНИИSCHRACK

- Время отключения:
 - без задержки, условная устойчивость к импульсному току 250 А (8/20 мкс);
 - задержка минимум на 40 мс (тип S), устойчивость к импульсному току до 5 кА (8/20 мс); с функцией избирательного отключения.
- Номинальное напряжение: 230/400 В; 50 Гц
- Номинальный ток: ≤ 40 A, ≤ 63 A, ≤ 80 A, ≤ 125 A
- Номинальный ток отключения: 30 мА, 300 мА (возможны другие варианты при специальном заказе)
- Время отключения: без задержки, тип S мин. задержка 40 мс
- Чувствительность: перем.ток и пульсирующий пост.ток
- Номинальная термическая стойкость при коротком замыкании: такая же, как у миниатюрных автоматических выключателей МСВ серии ВМ
- Резервный предохранитель для защиты от перегрузки и короткого замыкания: миниатюрные автоматические выключатели серии BM
- Срок службы: такой же, как у миниатюрных автоматических выключателей серии ВМ
- Предотвращение отключений, связанных с помехами от включения электронных источников света (ELD)
- Внешняя температура эксплуатации: от -25°C до +40°C
- Рабочий ресурс: такая же, как у миниатюрных автоматических выключателей МСВ серии ВМ
- Клеммы: 2/4-полюсные, зажимного типа с обеих сторон, 1-25 мм² в поперечном сечении безопасность для касания пальцем/рукой в соответствии с VBG 4, OVE-EN 6
- Для последующего подключения любых миниатюрных автоматических выключателей серии ВМ
- Блоки RCD, которые подключаются к миниатюрным автоматическим выключателем с м аксимальным номинальным током в 40 A, механически соединены с миниатюрными автоматическими выключателями с номинальным током >40 A.

■ УСТОЙЧИВОСТЬ К ИМПУЛЬСНОМУ ТОКУ >250 A

НОМИНАЛЬНЫЙ ТОК	ТИП	3AKA3 №
0,03 A	BB-402/003-A	BB044203
0,3 A	BB-402/03-A	BB044230
0,03 A	BB-404/003-A	BB044403
0,3 A	BB-404/03-A	BB044430
0,03 A	BB-632/003-A	BB046203
0,3 A	BB-632/03-A	BB046230
0,03 A	BB-634/003-A	BB046403
0,3 A	BB-634/03-A	BB046430
0,03 A	BB-802/003-A	BB048203
0,1 A	BB-802/1-A	BB048200
0,3 A	BB-802/03-A	BB048230
0,5 A	BB-802/05-A	BB048250
0,03 A	BB-804/003-A	BB048403
0,1 A	BB-804/1-A	BB048400
0,3 A	BB-804/03-A	BB048430
0,5 A	BB-804/05-A	BB048450
0,03 A	BB-1252/003-A	BB047203
0,1 A	BB-1252/1-A	BB047200
0,3 A	BB-1252/03-A	BB047230
0,5 A	BB-1252/05-A	BB047250
0,03 A	BB-1254/003-A	BB047403
0,1 A	BB-1254/1-A	BB047400
0,3 A	BB-1254/03-A	BB047430
0,5 A	BB-1254/05-A	BB047450

■ УСТОЙЧИВОСТЬ К ИМПУЛЬСНОМУ ТОКУ 5 КА, ТИП S

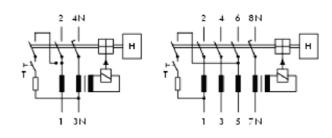
- JOTON INDOOTE	IC VIIVITIESTIDOTTONIS T	OK 3 3 KA, TVIII 0
НОМИНАЛЬНЫЙ ТОК	ТИП	3AKA3 №
0,1 A	BB-402/01-S	BB074210
0,3 A	BB-402/03-S	BB074230
0,1 A	BB-404/01-S	BB074410
0,3 A	BB-404/03-S	BB074430
0,1 A	BB-632/01-S	BB076210
0,3 A	BB-632/03-S	BB076230
0,1 A	BB-634/1-S	BB076400
0,1 A	BB-634/01-S	BB076410
0,3 A	BB-634/03-S	BB076430
0,1 A	BB-804/01-S	BB068400
0,3 A	BB-804/03-S	BB068430
0,5 A	BB-804/05-S	BB068450
0,1 A	BB-1254/01-S	BB067400
0,3 A	BB-1254/03-S	BB067430
0,5 A	BB-1254/05-S	BB067450

УСТОЙЧИВОСТЬ К ИМПУЛЬСНОМУ ТОКУ >250 A

НОМИНАЛЬНЫЙ ТОК	ТИП	3AKA3 №
0,03 A	BB-402/003	BB004203
0,3 A	BB-402/03	BB004230
0,03 A	BB-404/003	BB004403
0,3 A	BB-404/03	BB004430
0,03 A	BB-632/003	BB006203
0,3 A	BB-632/03	BB006230
0,03 A	BB-634/003	BB006403
0,3 A	BB-634/03	BB006430
0,3 A	BB-634/03SA	BB066430
1 A	BB-634/1	BB066400
0,03 A	BB-802/003	BB008203
0,3 A	BB-802/03	BB008230
0,5 A	BB-802/05	BB008250
1 A	BB-802/1	BB008200
0,03 A	BB-804/003	BB008403
0,3 A	BB-804/03	BB008430
0,5 A	BB-804/05	BB008450
1 A	BB-804/1	BB008400
0,03 A	BB-1252/003	BB007203
0,3 A	BB-1252/03	BB007230
0,5 A	BB-1252/05	BB007250
1 A	BB-1252/1	BB007200
0.03	BB-1254/003	BB007403
0,3 A	BB-1254/03	BB007430
0,5 A	BB-1254/05	BB007450
1 A	BB-1254/1	BB007400

■ УСТОЙЧИВОСТЬ К ИМПУЛЬСНОМУ ТОКУ 3 КА, ТИП G

НОМИНАЛЬНЫЙ ТОК	ТИП	3AKA3 №
0,03 A	BB-404/003-G	BB024403
0,03 A	BB-402/003-G	BB024203



RCCB

Страница **16**

■ RCCB – АВТОМАТ ЗАЩИТЫ ОТ ОСТАТОЧНОГО ТОКА, СЕРИЯ ВС

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальное напряжение:
 6кА: 4-полюсн. 230 В/400 В перем. тока, 2-полюсн. 230 В перем. тока 50 Гц 10 кА: 4-полюсн. 250 В/400 В перем. тока, 2-полюсн. 250 В перем. тока, 50 Гц
- Номинальная температура: от -25°C до +40°C
- Максимальные значения параметров резервного предохранителя от короткого замыкания: 6кA: 63 A gG (25 A-63 A) 10кA: 100 A gG
- Максимальные значения параметров резервного предохранителя от перегрузки:
 6кА: 25 A gL (для 25 A, 40 A), 40 A gG (для 63 A)
 10 кА: 50 A gL (для 80 A), 63 A gG (для 100 A)
- Безопасность при касании пальцем согласно стандартам BVG A3/OVE-EN 6
- Конструкция согласно стандартам EN 61 008, IEC 1008
- Установка на DIN-рейке (стандарт EN 50 022)

6 кA − 30 мA

НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
25 A	BC602203	BC652203	BC602103	BC652103
40 A	BC604203	BC654203	BC604103	BC654103
63 A	BC606203	BC656203	BC606103	BC656103

■ 10кА – 30 мА

НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
25 A	BC002203	BC052203	BC002103	BC052103
40 A	BC004203	BC054203	BC004103	BC054103
63 A	BC006203	BC056203	BC006103	BC056103
80 A	BC008203	_	BC008103	BC058103
100 A	BC000203	_	BC000103	BC050103

6κA − 100 мA

	НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
	TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
•	25 A	BC602210	BC652210	BC602110	BC652110
	40 A	BC604210	BC654210	BC604110	BC654110
	63 A	BC606210	BC656210	BC606110	BC656110

10кА − 100 мА

НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
25 A	BC002210	BC052210	BC002110	BC052110
40 A	BC004210	BC054210	BC004110	BC054110
63 A	BC006210	_	BC006110	BC056110
80 A	-	-	BC008110	BC058110
100 A	-	_	BC000110	BC050110

6κA − 300 мA

НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
25 A	BC602230	BC652230	BC602130	BC652130
40 A	BC604230	BC654230	BC604130	BC654130
63 A	BC606230	BC656230	BC606130	BC656130

■ 10кA - 300 мA

НОМИНАЛЬНЫЙ	2 ПОЛЮСА	2 ПОЛЮСА	4 ПОЛЮСА	4 ПОЛЮСА
TOK	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ	ПЕРЕМ. ТОК	ПУЛЬСИРУЮЩИЙ
25 A	BC002230	BC052230	BC002130	BC052130
40 A	BC004230	BC054230	BC004130	BC054130
63 A	BC006230	BC056230	BC006130	BC056130
80 A	-	-	BC008130	BC058130
100 A	-	-	BC000130	BC050130

МОДУЛЬНЫЕ ИЗОЛЯТОРЫ

■ МОДУЛЬНЫЕ ИЗОЛЯТОРЫ – СЕРИЯ ВZ

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Конструкция согласно стандарту IEC/EN 60 947-3
- Номинальное напряжение/частота: 230 В/400 В перем. тока 50/60 Гц
 240 В/415 В перем. тока 50/60 Гц в модели МЕ
- Емкость выводов: 2,5 мм² 50 мм²
- Резервный предохранитель (от короткого замыкания), макс.: 100 A gG
- IP20
- Установка на DIN-рейке (стандарт EN 50 022)
- Подходит для соединения со сборной шиной
- Индикатор положения контакта (красный/зеленый)

Страница **17**

ОДНОПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ	3AKA3 №	3AKA3 №
TOK		
40 A	BZ900241	при специальном заказе
63 A	BZ900261	при специальном заказе
80 A	BZ900281	при специальном заказе
100 A	BZ900201	при специальном заказе
125 A	BZ900221	при специальном заказе

/ ДВУХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ	3AKA3 №	3AKA3 №
TOK		
40 A	BZ900242	BZ900242ME
63 A	BZ900262	BZ900262ME
80 A	BZ900282	BZ900282ME
100 A	BZ900202	BZ900202ME
125 A	BZ900222	BZ900222ME

ТРЕХПОЛЮСНЫЕ

НОМИНАЛЬНЫЙ	3AKA3 №	3AKA3 №
TOK		
40 A	BZ900243	BZ900243ME
63 A	BZ900263	BZ900263ME
80 A	BZ900283	BZ900283ME
100 A	BZ900203	BZ900203ME
125 A	BZ900223	BZ900223ME

■ ТРЕХПОЛЮСНЫЕ С НЕЙТРАЛЬЮ

НОМИНАЛЬНЫЙ	3AKA3 №	3AKA3 №
TOK		
40 A	BZ900244	BZ900244ME
63 A	BZ900264	BZ900264ME
80 A	BZ900284	BZ900284ME
100 A	BZ900204	BZ900204ME
125 A	BZ900224	BZ900224ME

КОМПЛЕКТУЮЩИЕ ДЛЯ МСВ, RCBO И RCCB

Страница **18**

■ ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ ДЛЯ УПРАВЛЕНИЯ

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальный ток, зависящий от температуры: 8 А
- Номинальное напряжение: 250 В/440 В перем. тока; 50/60 Гц
- Минимальное номинальное напряжение: 24 В на изолирующий контакт
- AC13: 6 A/250 B 2 A/440 B, DC13: 4 A/60 B 0,5 A/230 B
- Максимальные значения параметров резервного предохранителя: 4 A GI либо SI-H
- Контакты: 1 норм. разомкн. + 1 норм. замкн.
- Сменные

ОПИСАНИЕ	РАЗМЕРЫ (ММ)	3AKA3 №
1 норм. замкн. + 1 норм. разомкн. для ВС (RCCB), завинчивающиеся	8,8 x 80 x 65,5	BD900002
1 норм. замкн. + 1 норм. разомкн. для ВМ (МСВ) и ВU (RCBO), завинчивающиеся	8,8 x 80 x 65,5	BD900006
1 норм. замкн. + 1 норм. разомкн. для ВМ (МСВ) и ВU (RCBO), защелкивающиеся	8,8 x 80 x 65,5	BM900001
1 норм. замкн. + 1 норм. разомкн. для BR, завинчивающиеся	9 x 90 x 65,5	BR900005

■ ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ/КОНТАКТ СИГНАЛА ОТКЛЮЧЕНИЯ

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Номинальный ток, зависящий от температуры: 5 А
- Номинальное напряжение: 250 В/440 В перем. тока; 50/60 Гц
- Минимальное номинальное напряжение: 5 В перем./пост. тока на изолирующий контакт
- Мин. номинальный ток: 10 мА на изолирующий контакт
- Максимальные значения параметров резервного предохранителя: 4 A gG либо SI-H
- AC12: 2A 230B, AC15: 1 A 230 B, DC12: 0,5 A 110 B
- 2 предохранительных контакта CO (вспомогательные контакты) или 1 предохранительный контакт CO (вспомогательный контакт) + 1 предохранительный контакт CO (электрическое отключение)
- Используются с МСВ серии ВМ, RCCВ серии ВС до 63 А, сменные

ОПИСАНИЕ	РАЗМЕРЫ (ММ)	3AKA3 №
2 предохранительных контакта СО (завинчивающегося типа)	8,8 x 80 x 65,5	BD900022
2 предохранительных контакта СО (защелкивающегося типа)	8,8 x 80 x 65,5	BM900022

■ ЗАЩИТНАЯ КРЫШКА ІР 20 ДЛЯ СЕРИИ BS

ДАННЫЕ КОМПАНИИ SCHRACK

• Крышка для винтов клемм (по одному винту на полюс)

ОПИСАНИЕ	РАЗМЕРЫ (ММ)	3AKA3 №
IP20/BS	17x19x10,5	BS900030

КОМПЛЕКТУЮЩИЕ ДЛЯ MCB, RCBO И RCCB

/ ДИСТАНЦИОННОЕ РАСЦЕПЛЕНИЕ

■ ДАННЫЕ КОМПАНИИ SCHRACK

- Рабочее напряжение 230 В Тип: 110-410 В перем. тока, 110-220 В пост. тока
- Рабочее напряжение 24 В Тип: 12-110 В перем. тока, 12-60 В пост. тока
- Индикатор положения переключателя
- Возможность монтажа сигнального контакта
- Количество потребляемой энергии источника низкого напряжения 24 В прибл. 63 ВА
- Используются с МСВ серии BS, MP

НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ	РАЗМЕРЫ (ММ)	3AKA3 №
UB=12-110 В перем. тока 12-60 В пост. тока	17,7 (26,2) x 80 x 75,5	BM900005
UB=110-415 В перем. тока 110-220 В пост. тока	17,7 (26,2) x 80 x 75,5	BM900006
UB=12-60 В перем. тока для BR	27 x 80 x 75,5	BR900004
UB=110-415 В перем. тока для BR	27 x 80 x 75,5	BR900003

РАСЦЕПЛЕНИЕ ПРИ ПОНИЖЕННОМ НАПРЯЖЕНИИ

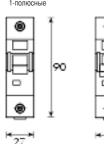
■ ДАННЫЕ КОМПАНИИ SCHRACK

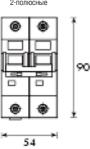
- Емкость выводов: 1-2 х 2,5 мм
- Выдвижная полюсная клемма
- Установка на DIN-рейке (стандарт EN 50022)
- Индикатор функции
- Служебная кнопка для отключения при отсутствии напряжения
- Используются с МСВ серии ВМ, МР

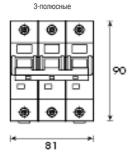
НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ	РАЗМЕРЫ (ММ)	3AKA3 №
115 В перем. тока без задержки	17,5 x 80 x 75,1	BS900007
230 В перем. тока без задержки	17,5 x 80 x 75,1	BS900008
400 В перем. тока без задержки	17,5 x 80 x 75,1	BS900009

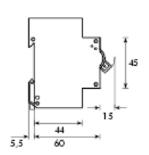
Страница **20**

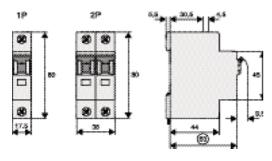
/ РАЗМЕРЫ

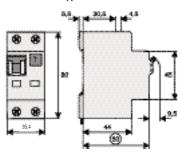

МСВ – СЕРИИ ВМ 4,5 КА / 6 КА / 10КА И МОДУЛЬНЫЕ ИЗОЛЯТОРЫ – СЕРИИ ВZ

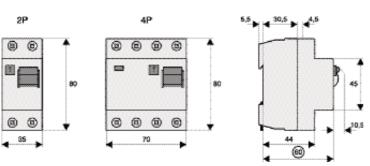

17.8 35.6 53.4 71.2 44

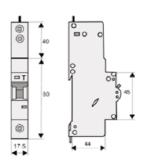

MCB SI-E

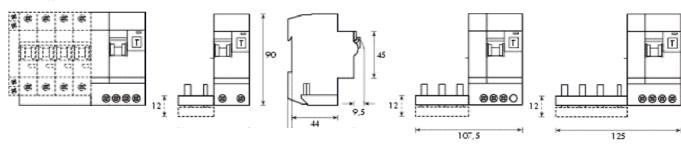

МСВ - СИЛЬНОТОЧНЫЕ, СЕРИИ BR 15 - 25 KA




108

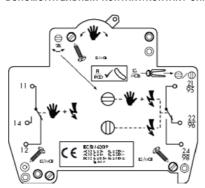

МСВ - СЕРИИ ВМЅО-ПОСТ. ТОК


RCBO - ОБЪЕДИНЕНИЕ СЕРИЙ МСВ И RCCB, LS-FI


RCCB – АВТОМАТ ЗАЩИТЫ ОТ ОСТАТОЧНОГО ТОКА, СЕРИЯ ВС

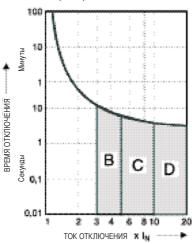
ОДНОМОДУЛЬНЫЕ, СЕРИЯ RCBO, LS-DI/PT

RCCBS - ДОПОЛНИТЕЛЬНЫЙ БЛОК ОСТАТОЧНОГО ТОКА, СЕРИЯ ВВ



РАЗМЕРЫ

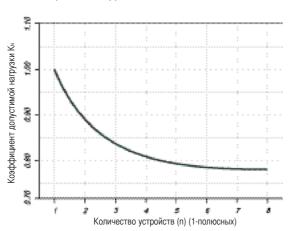
ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ ДЛЯ УПРАВЛЕНИЯ


23 30 44 44 88

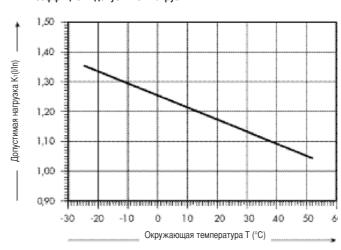
ВСПОМОГАТЕЛЬНЫЙ КОНТАКТ/КОНТАКТ СИГНАЛА ОТКЛЮЧЕНИЯ

■ ЗАВИСИМЫЕ ХАРАКТЕРИСТИКИ РЕЛЕЙНОЙ ЗАЩИТЫ (IEC/EN 60898)

Зависимые характеристики защиты В, С и D



Высокая скорость срабатывания (В), низкая (С), очень низкая (D)


ДОПУСТИМАЯ НАГРУЗКА

- Подходит для однополюсных выключателей серии ВМ
- Допустимая нагрузка для надежного срабатывания при окружающей температуре эксплуатации Т (°C) и п выключателях t I□= I₀KT(T)KN(N)

Допустимая нагрузка для блочного монтажа

Коэффициент допустимой нагрузки KN

Страница **21** Страница

22

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

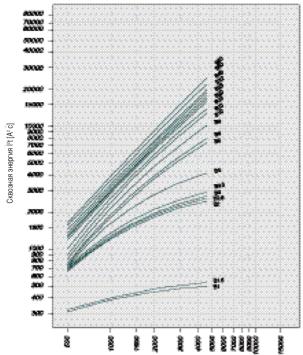
ВОЗДЕЙСТВИЕ ВНЕШНЕЙ ТЕМПЕРАТУРЫ НА ФУНКЦИЮ ТЕПЛОВОГО ОТКЛЮЧЕНИЯ

Регулируемое значение номинального тока при окружающей температуре 30°С.

Окружающая температура Т [°C] 10 23 30 35 40 -25 -20 -10 0 le [A] 45 50 55 80 0.19 0.19 0.16 0.17 0.17 0.16 0.16 0.15 0.16 0.16 0.14 0.14 9.16 0.20 0.31 0.30 0.29 0.28 0.27 0.29 0.25 0.25 0.24 0.24 0.29 0.29 0.22 8.25 0.5 9.61 9.60 0.56 0.56 9.54 9.52 0.50 0.49 9.46 9.47 0.48 9.45 9.44 0.75 0.92 | 0.60 | 0.87 | 0.84 | 0.81 | 0.79 | 0.75 | 0.74 | 0.73 | 0.71 | 0.89 | 0.86 | 0.86 1.0 0.99 0.97 0.66 0.83 0.90 1.2 1.2 1.1 1.1 1.0 0.89 1 1.2 1.7 1.8 1.7 1.5 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.8 1.5 1.8 1.0 1.5 1.7 1.7 1.6 1.8 1.5 1.5 1.5 1.4 1.4 20 1.6 2.4 2.4 2.3 72 2.2 2.5 2.0 2.0 1.8 1.0 1.8 1.5 1.8 2 3.0 2.0 27 26 28 25 24 24 2.2 2.8 2.3 2.3 2.5 3.1 3.6 3.5 3.4 3.3 8.5 3.0 3,0 2.9 2.8 2.8 3.7 3 4.2 4.1 3.9 3.0 3.7 3.5 3.4 3.4 2.3 3.5 4.5 3.9 4.9 4.0 4.7 4.5 4.3 4.2 4.0 3.9 3.6 3.7 3.5 5,6 4.6 6.0 5.6 5.4 5.2 5.0 4.9 4.7 4.8 4.5 4.4 \$ 6.1 7.5 7.2 6.7 0.5 6.0 5.6 5.3 7.0 6.3 5.8 5.7 5.5 5.4 ٠ 9.6 9.3 9.0 8.7 7,9 7.7 88 8.4 4.0 7.8 7.4 7.2 7.1 幅 12 12 12 11 11 换 10 9.8 8.7 8.6 9.3 9.0 8.9 15 14 14 18 18 12 12 25 12 13 12 11 15 11 81 16 18 95 15 14 14 13 13 13 12 12 12 12 18 17 17 18 15 15 14 14 15 18 69 15 17 17 16 65 15 15 15 14 14 20 19 19 19 18 18 24 23 22 22 21 20 20 19 26 24 29 28 25 24 31 30 27 26 25 24 23 25 22 26 38 37 36 35 33 32 32 35 30 30 29 20 32 30 47 45 39 38 46 49 48 43 42 40 38 37 36 35 60 56 146 54 62 8 42 48 47 46 44 45 **5**\$ 41 77 78 73 71 en 96 63 62 81 60 58 **97** 58 43

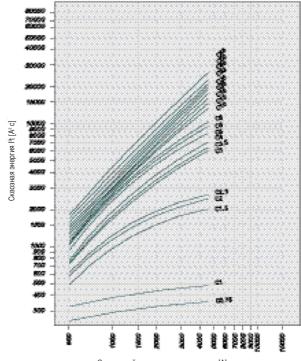
Регулируемое значение номинального тока при окружающей температуре 40°С.

		,	,	Oi	кружаю	щая тем	ператур	oa T [°C]			
in [A]	-10	0	10	20	30	35	40	45	50	55	60
0,16	0,20	0,19	0,19	0,18	0,17	0,17	0,16	0,16	0,15	0,15	0,15
0,25	0,31	0,30	0,29	0,28	0,27	0,26	0,25	0,25	0,24	0,24	0,23
0,5	0,61	0,60	0,58	0,56	0,54	0,52	0,50	0,49	0,48	0,47	0,46
0,75	0,92	0,90	0,87	0,84	0,81	0,78	0,75	0,74	0,73	0,71	0,69
1	1,2	1,2	1,2	1,1	1,1	1,0	1,0	0,99	0,97	0,95	0,93
1,5	1,8	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,5	1,4	1,4
1,6	2,0	1,9	1,9	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,5
2	2,4	2,4	2,3	2,2	2,2	2,1	2,0	2,0	1,9	1,9	1,9
2,5	3,1	3,0	2,9	2,8	2,7	2,6	2,5	2,5	2,4	2,4	2,3
3	3,7	3,6	3,5	3,4	3,3	3,1	3,0	3,0	2,9	2,8	2,8
3,5	4,3	4,2	4,1	3,9	3,8	3,7	3,5	3,4	3,4	3,3	3,2
4	4,9	4,8	4,7	4,5	4,3	4,2	4,0	3,9	3,9	3,8	3,7
5	6,1	6,0	5,8	5,6	5,4	5,2	5,0	4,9	4,8	4,7	4,6
6	7,3	7,2	7,0	6,7	6,5	6,3	6,0	5,9	5,8	5,7	5,6
8	9,8	9,6	9,3	9,0	8,7	8,4	8,0	7,9	7,9	7,6	7,4
10	12	12	12	11	11	10	10	9,9	9,7	9,5	9,3
12	15	14	14	13	13	13	12	12	12	11	11
13	16	16	15	15	14	14	13	13	13	12	12
15	18	18	17	17	16	16	15	15	15	14	14
16	20	19	19	18	17	17	16	16	15	15	15
20	24	24	23	22	22	21	20	20	19	19	19
25	31	30	29	28	27	26	25	25	24	24	23
32	39	38	37	36	35	33	32	32	31	30	30
40	49	48	47	45	43	42	40	39	39	38	37
50	61	60	58	56	54	52	50	49	48	47	46
63	77	76	73	71	68	66	63	62	61	60	58


ВОЗДЕЙСТВИЕ ЧАСТОТЫ ТОКА В СЕТИ

Воздействие частоты сети на процесс отключения І ма в режиме быстрого расцепления

	Частота се	ти f [Гц]					
	16%	50	60	100	200	300	400
i _{BIA} (f)/i _{BIA} (50Hz) [%]	91	100	101	106	115	134	141


■ СКВОЗНАЯ ЭНЕРГИЯ ВМ4

Сквозная энергия ВМ4, характеристика В, 1 полюс

Ожидаемый ток короткого замыкания [А]

Сквозная энергия ВМ4, характеристика С, 1 полюс

Ожидаемый ток короткого замыкания [А]

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ4 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ DIAZED

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ4 и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки Iь [кА] (то есть при силе тока короткого замыкания Iьв ниже Іь будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

*) в основном отвечает стандарту EN 60898 D.5.2.b

-----173 - T

63

Характеристика В избирательности по току короткого замыкания в направлении плавкой вставки **DIAZED***)

DIAZED DIR DIV gL/gG B**864** (, (A) 35 95 105 <05° 12 452 4.52 453 452 452 452 453 1.0 453 <0.5 [©] 1.0 452 452 4.52 452 452 1,5 2.0 <0.5° <0.5° 0.8 4.52 452 452 453 453 <0.50 <0.50 4.52 452 452 453 453 2.5 1.5 3.0 <0.5 P <0.5% 1.4 4.52 454 452 454 454 453 <0.5° <0.5° 4.57 457 457 454 3.5 1.3 453 <0.50 453 < 0.5% 457 457 1.0 3.5 <0.5° <0.5° 5 457 453 453 454 453 < 0.5 % 457 6 06 0.9 1.8 ą <0.50 457 0.8 1.6 2.6 453 453 10 0.5 3.9453 453 13 0.5 0.7 2.0 3.6 1.9 16 1.2 3.2 454 459 453 1.2 20 1.8 3.1 25 1.2 453 3.0 1.8 42 453 32 1.7 40 453 2.7 2.8 50 453 2.5 3.5 453

1) Ограничение избирательности по току Is при значении ниже 0,5 кА

2) Ограничение избирательности по току: ls = номинальная отключающая способность x lcn миниатюрного автоматического выключателя

вез избирательности

Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки **DIAZED***)

BM4	DIAZE	D DII DI	V giJg(â					
(a [A]	10	16	20	25	25	50	63	80	100
0.75	1.0	452	457	452	457	45 ²⁾	45 ²⁾	45.2	45.7
1.0	<0.511	1.2	453	452	457	45 ²⁾	452	452	452
1.5	<0.511	<0.51)	1.0	2.2	453	45 ²⁾	452	452	452
2.0	<0.51)	<0.51)	0.8	1.6	453	45 ²⁾	457)	452	452
2.5	<0.511	<0.51)	0.8	1.4	457	45 ²⁾	45 ²⁾	452	45.2
3.0	<0.51	<0.51	0.6	0.9	454	45 ²⁾	45 ²⁰	45.7	45.7
3.5	<0.51	<0.51	0.6	0.9	2.2	45 ²⁾	45 ²⁾	45.7	45.7
4	<0.57	<0.51	0.6	0.8	1.8	3.6	45 ²⁰	452	452
5	<0.511	< 0.511	0.6	0.7	15	2.7	452)	457	457
6		<0.511	0.5	0.6	1.4	2.4	452	452	452
8		<0.51	<0.511	0.6	13	2.2	45 ²⁾	452	452
10			<0.511	0.6	13	2.0	3.6	45.2	452
13					13	1.9	3.3	452	452
16					1.2	1.8	3.2	4.4	452
20					1.2	1.8	3.1	4.1	452
25						1.7	2.8	3.8	457
32							2.7	3.7	457
40								3.5	457
50									457
63									

Страница **24**

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ4 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ NEOZED

В случае короткого замыкания возникает избирательность между миниатторными автоматическими выключателями ВМ4 и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки I_s [кА] (то есть при силе тока короткого замыкания I_s ниже I_s будет отключаться только миниатторный выключатель; при более высокой силе тока будут срабатывать оба устройства).

1) Ограничение избирательности по току I_s при значении ниже 0,5 кА

*) в основном отвечает стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкой вставки **NEOZED***)

2) Ограничение избирательности по току: I_s = номинальная отключающая способность х I_m миниатюрного автоматического выключателя

без избирательности

Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки **NEOZED***)

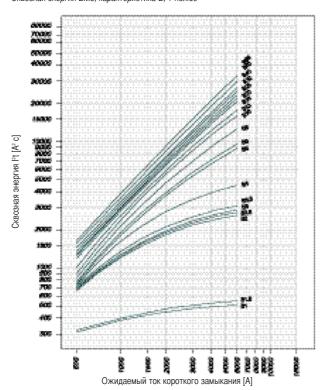
BM4	NEOZE	D Det	Des gL	/gG						BM4	NEOZE	D D¢1	ರಿಯ ಕೃಷ್ಣಿ	l gG					
[, [A]	10	16	20	25	35	50	63	80	100	i, [A]	10	16	20	25	35	50	63	80	100
1.0	≪0.5 7	4.5 0	4.5 3	4.5 3	4.52	457	457	453	453	0.73	<0.511	452	д53	453	458	4.5 0	4.50	4.5 3	4.5 3
1.5	≪0.5 0	4.1	4.5 3	4.5 3	4.52	457	457	453	453	1.0	<0.5*1	452	453	д53	458	4.5 0	4.50	4.5 3	4.5 3
2.0	≪0.5 7	≪0.5°b	0.6	1.0	4.52	457	457	453	453	1.5	<0.511	0.5	0.6	0.9	453	4.5 D	4.50	4.5 0	4.5 0
2.5	≪0.5 7	<0.5 b	0.6	1.0	4.52	457	457	453	453	2.0	<0.511	<0.5 ¹⁾	0.5	0.7	458	4.50	4.50	4.5 0	4.5 0
3.0	≪0.5 7	<0.5 °b	0.5	1.0	4.52	457	457	453	453	2.5	<0.511	<0.51	0.5	0.7	453	450	4.50	4.5 3	4.5 0
3.5	400.5 V	40.5 B	0.5	0.9	4.57	452	452	458	458	3.0	<0.5 ¹¹	<0.5 ¹	<0.5 ¹	П.6	1.9	4.5 2	4.5 %	4.5 7	4.5 3
4	40.5 Ti	±00.5 °0	0.5	0.9	2.5	452	452	458	458	3.5	<0.5 ¹¹	<8.5 ¹¹	<0.5 ¹¹	E.6	1.8	4.5 75	4.5 %	4.5 3	4.5 3
5		+00.5 °0	0.5	8.0	1.7	48	452	д53	453	4	<0.51	<8.5 ¹¹	<0.5 ¹¹	П.6	1.6	4.0	4.5 2	4.5 3	4.5 3
6		+00.5 °0	0.5	3.0	1.6	3.6	452	453	453	5		<8.5 ¹¹	<0.5 ¹¹	<u>0.5</u>	13	3.1	4.5 20	4.5 3	4.5 3
8			0.5	0.8	1.4	2.8	43	453	458	6		<0.5 ¹¹	<0.5 11	<0.5 ¹⁾	1.2	2.7	4.5 %	4.5 7	4.5 3
10			0.5	0.7	1.3	2.4	3.4	453	453	8		<0.511	<0.5 ¹¹	<0.5 ¹⁾	1.2	2.5	4.0	4.5 0	4.5 0
13			<0.5 ¹¹	0.7	1.2	2.3	3.2	453	453	10			<0.5 [†]	<0.5 ¹⁾	1.2	2.3	3.1	4.5 0	4.5 0
16				0.6	1.1	2.2	2.0	453	453	13					1.1	2.2	3.0	4.5 0	4.5 0
20					1.1	2.1	2.8	44	453	16					1.1	2.1	2.8	4.4	45 3
25					1.1	2.0	2.7	4.2	458	20					1.0	2.0	2.6	4.0	4.5 7
32						2.0	2.6	40	453	25						1.9	2.5	3.8.	4.5 3
40							2.5	3.8	458	32							2.5	3.7	4.5 7
50							2.3	3.4	458	40								3.5	4.5 7
63									453	50									45 3
h									·	63									

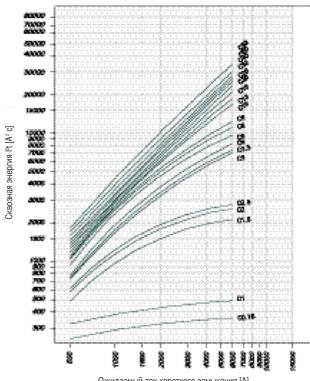
■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ4 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ NH-00

Характеристика В избирательности по току короткого замыкания в направлении плавкой вставки **NH-00***)

Характеристика С и	збирательности по	току короткого	замыкания в нап	правлении плавкой	вставки NH-00 *)

3364	MH-0	0 gLĄ	jG									
, PAI	36	29	25	12	36	40	90	63	30	300	125	160
1.0	0.9	452	453	453	458	452)	452	453	450	453	452)	452
1.5	0.8	450	452	450	454	452)	450	452	450	453	452)	452
2.0	<0.5 °	0.5	1.0	2.5	454	452)	459	452	452	454	45 ²⁾	452
2.5	<05°	0.5	1.0	23	454	452)	450	452	45.2	453	452)	452
8.8	<05°	0.5	0.9	2.3	454	452)	450	452	45.0	453	452)	452
1.5	-05 ⁰	0.5	0.9	15	458	452)	450	452	450	453	45 ²⁾	452
4	-05°	<05 ³	8.0	13	2.3	4.5	454	453	452	454	452)	452
ś	-05°	<05 ³	0,7	1.1	1,6	2.2	3.6	453	45.0	452	452)	452
6	-05 ⁰	<05 ³	0,7	1.1	15	20	3.3	4.3	452	452	45 ²⁾	452
ŧ	-05D	<053	0.6	10	1,3	1.7	2.6	3.3	450	452	452)	452
10		<05¥	0.6	09	12	1.5	2.2	2.7	40	454	452)	452
13		<05¥	0,6	0.8	1.1	14	2.1	26	38	453	452)	457
16			0.5	07	1.0	1.3	1.9	2.4	5.4	453	452)	452
26				07	1.0	1.3	1.9	2.4	33	454	452)	452
26				07	1.0	1.3	1.8	2.3	32	454	452)	452
KZ					0.9	1.2	1,7	2.2	3.7	452	45 ²⁰	452
46								2.1	30	452	45 ²⁾	452
64								1.9	28	452	45 ²⁰	452
68										44	452)	452


BM4	NH-C	io gilly	75									
, Wi	16	20	25	12	35	40	50	63	80	100	125	360
3.3%	453	453	452	452	452)	450	452	452	453	452	453	452
1.0	09	453	450	457	453)	450	453	450	452	45.0	454	452
1.5	<0.53	0.6	13	42	452)	450	454	452	452	45.0	454	457
2.0	<0.53	0.6	10	2.5	452)	450	453	450	452	45.0	454	452
2.5	<0.53	0.5	10	2.1	452)	450	453	450	452	453	454	452
3.5	d0.5 %	-05D	02	1.2	u	2.6	453	450	453	450	458	452
3.5	d0,5 %	405°D	07	1.1	1.7	2.4	42	45.2	454	450	454	452
4	<0.5 ¥	405°D	07	1,0	3.5	2.1	36	452	453	45.0	458	452
5	d),5 %	<05°0	06	8.0	3.2	1.7	28	38	453	453	458	452
6	d),5 %	-05°0	0.5	8.0	15	15	25	jj	453	450	452	452
,	Ø53	<05 [™]	0.5	0.8	11	15	23	29	452	453	454	452
10			0.5	0,7	10	1.4	20	25	3,8	453	454	452
ts					1,0	13	1.9	24	3.6	45.3	454	452
16					10	13	18	23	3.3	450	454	452
20					10	1.2	13	22	3.2	45.3	454	45%
25							1.6	2,1	3.0	450	458	452
82								2.1	29	450	458	452
40									28	450	454	457
90										450	452	452
63											454	454


Страница 25

■ СКВОЗНАЯ ЭНЕРГИЯ ВМ6

Сквозная энергия ВМ6, характеристика В, 1 полюс

Сквозная энергия ВМ4, характеристика С, 1 полюс

Ожидаемый ток короткого замыкания [А]

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ6 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ DIAZED

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ6 и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки І، [кА] (то есть при силе тока короткого замыкания Ів ниже Ів будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

 *) в основном отвечает стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкой вставки DIAZED') Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки DIAZED')

3866	DIAZED DISDIV gL/gG													
, [A]	10	16	20	25	35	50	63	80	100					
1.0	<0.5 7	1.2	602	6.00	6.02	6.025	6.023	6.0 ²⁸	6.0 ²⁸					
1.5	<0.5 ℃	1,0	602	600	6.07	6.078	6.073	6.0 2	6.0 ²					
2.0	<0.5 ₹	<0.5 ℃	0.8	1,6	6.07	6.077	6.077	6.0 2	6.0 ²					
2.5	<0.50	<0.50	0.8	1.5	6.07	6.073	6.077	6.0 ²⁸	6.0 ²					
3.0	<0.5 0	<0.50	0.8	1.4	6.07	6.07	6.077	6.0 2	6.0 ²					
3.5	<0.5 [™]	<0.5 ₽	0.7	1.3	6.02	6.028	6.02	6.0 ²⁸	6.0 ³					
4	<0.5 ₹	<0.5 P	0.6	1.0	3.6	6.029	6.028	6.0 ²⁸	6.0 ³					
5	<0.5 ™	<0.5 Tr	0.6	0.9	2.0	3.5	6.0 ²⁸	6.0 ²⁸	60 ³					
E		<0.50	0.6	0.9	1.8	3.2	6.028	60 ²⁸	6.0 ³					
a		<0.50	0.5	0.8	1.6	2.6	5.2	6.0 3	6.0 ²⁸					
10			0.5	0.8	1.4	2.2	3.9	6.0 2	6.0 ²					
13			0.5	0.7	1.3	2.0	3.6	5.4	6.0 ²					
16				0.6	1.2	1.9	3.2	46	6.0 ²					
20					1.2	1.8	3.1	44	6.0 ²					
25					1.2	1.8	3.0	42	6.0 ²⁸					
32						1.7	2.8	3.9	6.0 ³					
40							2.7	3.8	6.0 ²⁸					
SQ							25	3.5	5.7					
63									5.9					

1)	Ограничение	избирательности	ПО	току	/ І₃ при значении ниже 0,5 кА	
01	A					

²⁾ Ограничение избирательности по току: І₃ = номинальная отключающая способность х І₀п миниатюрного автоматического выключателя

без избирательн	ости

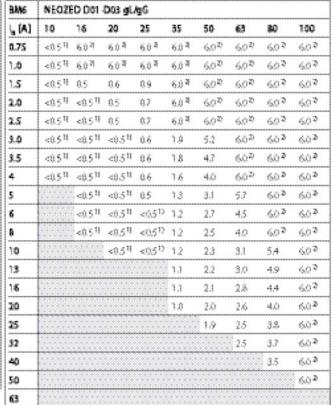
BME	CIAZE	D-IIIO O	V giJg¢	ā					
(A)	10	16	20	25	35	50	63	80	100
0.75	1.0	60 ²⁸	604	6.0 ⁸	6.03	6,0 ²⁾	6,0 ²⁾	603	6.00
1.0	<0.511	1.2	603	60 a	6.03	6.02)	6,020	6.02	6.00
1.5	<0.5 ¹	<0.5 ¹¹	1.0	2.2	6.02	60 ²⁾	6.020	6.07	6.03
2.0	<0.511	<0.511	0.6	1.6	6.03	60 ²⁰	60°	6.03	6.03
2.5	<0.51	< 0.511	0.6	1,4	6.03	6.0 ²⁾	6,020	6.02	6.03
9.0	<0.511	<0.511	0.8	0.9	6.03	60 ²⁾	6,020	6.02	602
9.5	<0.511	<0.51	0.6	0.9	2.2	45	6.02	6.02	602
4	<0.511	<0.511	0.6	0.8	1.8	3.6	6.02)	602	602
5	<0.511	<0.51	0.6	0.7	15	23	6,020	602	602
6		<0.511	0.5	0.6	1.4	2.4	55	6.02	6.02
8		c0.511	< 0.511	0.6	1.3	2.2	4,7	6.02	6.07
10			< 0.511	0.6	1.3	2.0	3.6	6.03	602
13					13	1.9	3.3	5.0	607
16					1.2	1.8	3.2	4,4	603
20					12	1.8	3.1	4.1	6.02
25						13	2.8	3.8	602
92							23	3.7	603
40								35	5,9
50									5.5
63									

Страница 26

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ МВ6 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ NEOZED

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ6 и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки І، [кА] (то есть при силе тока короткого замыкания І инже І будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

*) в основном отвечает стандарту EN 60898 D.5.2.b


плавкой вставки **NEOZED***)

Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки **NEOZED***)

3866	NEOZE	D 001	Des giu	lgG					
, [A]	10	16	20	25	35	50	63	80	100
1.0	<0.5 7	6,0 ²⁾	602	6.00	6.02	6.025	6.028	6.0 ²⁸	6.0 ²
1.5	<0.570	4.1	602	6.03	6.07	6.07	6.073	6.0 2	6.0 2
2.0	<0.5 %	<0,570	0.6	1.0	6,02	6.071	6.073	6.0 ²⁸	6.0 ²
2.5	<0.57	<0.50	0.6	1,0	6.07	6.071	6.077	6.0 ²⁸	6.0 2
3.0	<0.57	<0.5 ℃	0.5	1,0	6.07	6.07	6.077	6.0 ²⁸	6.0 ²
3.5	<0.5 Φ	<0.5 P	0.5	0.9	6.02	6.029	6.02	6.0 ³	6.0 ²
4	<0.5 Tr	<0.5 ^{T)}	0.5	0.9	2.5	6.029	6.028	6.0 ²⁸	6.0 2
5		<0.5 0	0.5	0.8	1.7	4.0	6.028	6.0 ²⁸	6.0 ²
E		<0.5 7	0.5	0.8	1.6	3.6	6.0 ²⁸	60 ²⁸	6.0 2
a			0.5	0.8	1.4	2.8	43	6.0 3	6.0 2
10			0.5	0.7	1.3	2.4	3.4	6.0 ²⁸	6.0 2
13			<0.511	0.7	1.2	2.3	3.2	5.8	6.0 ²
16				0.6	1.1	2.2	2.9	46	6.0 2
20					1.1	2.1	2.8	44	6.0 2
25					1.1	2.0	2.7	42	6.0 ²
32						2.0	2.6	4.0	6.0 ²
40							25	3.8	6.0 ²
50							2.9	3.4	6.0 ²
63									5.0 ²

 Orpa 	ничение изб	ирательности	по току	I₃ при	значении	ниже 0.5 кА

²⁾ Ограничение избирательности по току: I_s = номинальная отключающая способность х I_m миниатюрного автоматического выключателя

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ6 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЕЙ NH-00

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ6 и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки Іь [кА] (то есть при силе тока короткого замыкания Іьв ниже Іь будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

*) в основном отвечает стандарту EN 60898 D.5.2.b

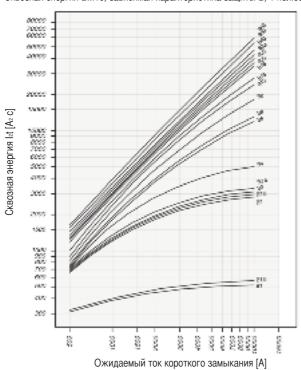
Характеристика В избирательности по току короткого замыкания в направлении плавкой вставки **NH-00***)

Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки **NH-00***)

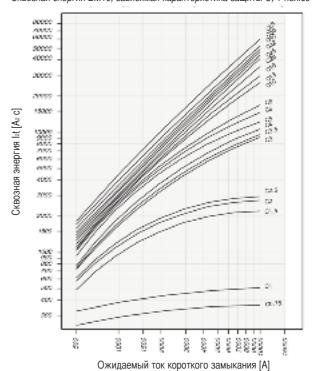
Страница

27

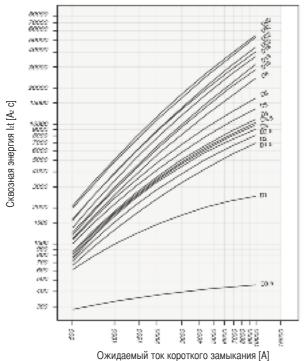
3866	NH-0	ملو ٥	gG										BM6	NH-	0 gi./	gG									
, M	16	20	25	32	35	40	50	63	80	100	125	160	1, 943	16	20	25	32	35	40	50	63	80	100	125	160
1.0	0.9	400	6.02	602	6.02	60D	6,02	6.02	602	6.03	402)	6.021	0.75	603	6.03	402	6.025	6,020	6.02	6.04	402	6.02	602	6.02	400
1.5	0.8	600	6.02	602	6,02	602)	600	6.0.2	602	6.03	602)	6.07	1.0	09	6,03	400	6.023	6,020	6,03	6.03	400	6,02	602	6.02	602)
2.0	<05 ⁰	0.5	1.0	25	6.02	602)	400	6.02	603	6.03	602)	6.07	1.5	<0.53	0.6	13	42	6,020	6,02	6.03	402	6.02	602	6.029	402)
2.5	<05°	0.5	1.0	23	6.04	602)	600	6.02	602	6.03	60 ²⁰	6.027	2.0	<0.5 ³	0.6	10	25	6,02)	6.02	6.03	602	6.02	602	6,024	602)
3.0	<050	0.5	0.9	2.3	6.02	602)	600	6.0.2	602	6.03	602)	6.02	2.5	<0.5 ₹	0.5	10	21	6,020	6.03	6.03	402	6,02	602	6.028	602)
3.5	-05D	0.5	0.9	18	55	602	6,02	6.03	602	6.02	602)	6.02	3.B	40.5 T	<05°	07	1.2	1.8	2.6	47	602	8,03	600	6.021	602
4	405 D	c053	8.0	13	2.3	4.3	6,02	6.03	600	6.02	602	6.024	3.5	d),5 %	405T	07	1.1	17	2.4	42	602	6,03	600	6.021	602
5	-Ø50	<05 ¹⁸	0,7	1.1	1.6	2.2	36	48	602	6.02	602)	6.024	4	<0.5 ¥	<05°	07	1.0	35	2.1	36	50	6.03	602	6.021	6020
6	-05D	<05 ³	0,7	1.1	15	20	33	4.3	602	6.02	60 ²⁰	6.029	5	<0.5 ¥	<0.5°	06	8,0	15	1.7	2.8	38	6,03	600	6.024	6.0 ²⁰
ŧ	⊲05°D	<05 ³	0.6	10	13	17	26	3.3	5.2	6.02	40D	6.024	6	<0.5 %	<05°	0.5	8,0	12	1.5	25	ij	5.7	602	6,021	602
18		<05T	0.6	09	12	15	2.2	23	40	6.03	602)	6.07	1	<0.51	-05T	0.5	0,8	11	15	23	29	49	600	6.02	600
13		<05T	0.6	0.8	1.1	14	1.5	26	38	6.03	40 ²⁾	6.02	10			0.5	0,7	10	1.4	2.0	25	3.8	602	6.029	6020
16			0.5	07	1.0	1.3	1.9	2.4	5.4	6.03	602)	6.07	13					1/3	13	1.9	2.4	3.6	502	6.028	602)
20				07	1.0	1.3	1.9	2.4	3.3	6.03	402)	6.07	16					1/3	13	18	2.3	3,3	602	6.025	400
25				07	1.0	ij	18	2.3	3.2	57	6020	6.029	20					30	1.2	17	22	3.2	5.5	6.021	602)
32					0.9	12	1,7	2.2	3.7	54	602)	6.02	25							1.6	2.3	3.0	52	6.028	6020
40								2.1	30	51	602)	6,024	32								2.1	28	50	6.021	6020
50								1.9	28	47	60 ²⁾	6,024	40									28	48	6.021	60 ²⁰
63										44	60 ²⁾	6.02	50										45	6.021	60 ²⁰
													63											5.9	6020



¹⁾ Ограничение избирательности по току I_n при значении ниже 0,5 кA 2) Ограничение избирательности по току: I_n = номинальная отключающая способность х I_m миниатюрного автоматического выключателя


Страница **28**

■ СКВОЗНАЯ ЭНЕРГИЯ ВМ10


Сквозная энергия ВМ10, зависимая характеристика защиты В, 1 полюс

Сквозная энергия ВМ10, зависимая характеристика защиты С, 1 полюс

Страница 29

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ10 В НАПРАВЛЕНИИ ПРЕДОХРАНИТЕЛЯ DIAZED

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ10кА и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки І. [кА] (то есть при силе тока короткого замыкания І. вниже І. будет отключаться только миниатюрный выключатель, при более высокой силе тока будут срабатывать оба устройства).

*) согласно стандарту EN 60898 D.5.2.b

 $<0.5^{()}$ 1.2

<0.51) 1.0

 $<\!0.5^{(1)} <\!0.5^{(1)} \cdot 0.8$

 $<0.5^{(1)}$ $<0.5^{(1)}$ 0.8

<0.51) <0.51) 0.8

 $<0.5^{(1)}$ $<0.5^{(1)}$ 0.7

 $<0.5^{(1)}$ $<0.5^{(1)}$ 0.6

 $<0.5^{(1)}$ $<0.5^{(1)}$ 0.6

<0.50 0.6

 $< 0.5^{\circ} - 0.5$

BM10kA

լ_ո [A]

1.0

1.5

2.0

2.5

3.0

3.5

4

5

6

8

10

13

16

20

25

32

40

50 63

DIAZED DII-DIV aL/aG

Характеристика В избирательности по току короткого замыкания в направлении плавкого предохранителя DIAZED*)

Характеристика С избирательности по току короткого замыкания в направлении плавкого предохранителя DIAZED*)

þ	V gL/gG	ì						BM10kA	DIAZB	D DII-DI	V gL/g0	3					
	20	25	35	50	63	80	100	I _n [A]	10	18	20	25	35	50	63	80	100
	10.0%	$10.0^{(2)}$	$10.0^{(2)}$	$10.0^{(2)}$	10.08	10.0^{23}	10.021	0.75	1.0	$10.0^{(2)}$	10.0^{21}	10.021	10.0^{21}	10.0%	10.0%	10.0%	10.0%
	10.0%	10.0°	$10.0^{\circ})$	$10.0^{\circ})$	10.0^{23}	10.0^{21}	10.0^{21}	1.0	$< 0.5^{10}$	1.2	10.0^{21}	10.0^{21}	10.0^{21}	10.0%	10.0%	10.0%	10.0%
9	8.0	1.6	$10.0^{\circ})$	$10.0^{\circ})$	10.0^{23}	10.0^{23}	10.0^{21}	1.5	<0.51)	$<\!\!0.6^{(1)}$	1.0	2.2	10.0^{21}	10.0^{20}	10.0%	10.0%	10.0%
0	0.8	1.5	$10.0^{(2)}$	$10.0^{(2)}$	10.0^{21}	10.0^{21}	10.0^{21}	2.0	<0.51)	$<0.6^{(1)}$	0.8	1.6	10.0^{21}	10.02	10.0%	10.0%	10.0%
0	8.0	1.4	$10.0^{(2)}$	$10.0^{(2)}$	10.0^{20}	10.0^{21}	10.0^{21}	2.5	$< 0.5^{10}$	$<0.5^{(1)}$	8.0	1.4	10.0^{21}	10.02)	10.0%	10.0%	10.0%
0	0.7	1.3	10.0°	10.0°	10.0^{3}	10.0^{21}	10.0^{21}	3.0	$<0.5^{(1)}$	$<0.5^{(1)}$	0.8	0.9	10.0^{21}	10.0^{23}	10.0%	10.0%	10.0%
0	0.6	1.0	3.6	$10.0^{(2)}$	10.0^{23}	10.0^{23}	10.0^{23}	3.5	<0.51)	<0.61	0.6	0.9	2.2	4.5	10.0%	10.0%	$10.0^{(2)}$
0	0.6	0.9	2.0	3.5	8.5	10.0^{21}	10.0^{20}	4	<0.51)	$<0.6^{(1)}$	0.6	0.8	1.8	3.6	9.7	10.0%	10.0%
0	0.6	0.9	1.8	3.2	7.4	10.0^{21}	10.021	5	$< 0.5^{(1)}$	$<0.5^{(1)}$	0.6	0.7	1.5	2.7	7.3	10.0%	$10.0^{(2)}$
0	0.5	0.8	1.6	2.6	5.2	8.3	10.0^{23}	6		<0.51)	0.5	0.6	1.4	2.4	5.5	10.0%	10.02)
	0.5	0.8	1.4	2.2	3.9	6.0	10.0^{23}	8		$<0.5^{(1)}$	$<\!\!0.5^{(1)}$	0.6	1.3	22	4.7	8.7	$10.0^{(2)}$
	0.5	0.7	1.3	2.0	3.6	5.4	10.0^{21}	10			$<\!\!0.5^{(1)}$	0.6	1.3	2.0	3.6	5.4	$10.0^{(2)}$
		0.6	1.2	1.9	3.2	4.6	8.4	13					1.3	1.9	3.3	5.0	9.4
			1.2	1.8	3.1	4.4	7.8	16					1.2	1.8	32	4.4	0.8
			1.2	1.8	3.0	4.2	7.8	20					1.2	1.8	3.1	4.1	7.0
				1.7	2.8	8.9	6.8	25						1.7	28	3.8	6.5
					2.7	8.8	6.5	32							2.7	3.7	6.2
					2.5	8.5	5.7	40								3.5	5.9
							5.8	50									5.5
-	TI LIOOTIA EL	TOWN YOU	OTVOEO OO	M WOUND	, uagnana	1011111		63									
C)	тьности по	, τυκу κυρ	u ikui u 3di	иыкапия І	э панравл	СПИИ											

Характеристика D избирательности по току короткого замыкания в направлении
плавкого предохранителя DIAZED*)

BM10ĸA	DIAZE	D DII-DI	V gL/g6	à					
ι, [A]	10	16	20	25	35	50	63	80	100
0.5	0.5	3.0	$10.0^{(2)}$	$10.0^{(2)}$	$10.0^{(2)}$	$10.0^{(2)}$	10.0^{21}	10.0^{21}	10.0^{20}
1.0	<0.51)	$<\!0.5^{()}$	1.0	2.4	$10.0^{2)}$	$10.0^{2)}$	10.0^{21}	10.0^{21}	10.0^{20}
1.5	<0.51)	$< 0.5^{()}$	0.7	1.2	3.5	7.7	10.0^{21}	10.0^{21}	10.0^{20}
2.0	<0.51)	$<\!0.5^{()}$	0.6	1.0	2.8	5.8	10.0^{21}	10.0^{21}	10.0^{20}
2.5	<0.51)	$< 0.5^{1)}$	0.6	1.4	2.3	4.6	10.0^{21}	10.0^{21}	10.0^{20}
3.0	<0.51)	< 0.51)	0.6	0.9	2.3	4.3	10.0^{23}	10.0^{21}	10.0^{20}
3.5	<0.51)	$<\!0.5^{()}$	0.6	0.9	2.1	4.0	10.0^{23}	10.0^{21}	10.0^{20}
4		<0.5 ¹⁾	0.6	0.9	2.0	3.8	9.5	10.0^{21}	10.0^{20}
5		<0.51)	0.5	0.7	1.7	3.1	7.0	10.0^{23}	10.0^{20}
8			0.5	0.7	1.5	2.6	5.3	9.1	10.0^{30}
8			$< 0.5^{11}$	0.7	1.4	2.2	3.9	6.0	10.0^{20}
10				0.7	1.2	1.9	3.4	5.0	9.5
13					1.2	1.8	3.2	4.6	8.6
16						1.6	2.7	4.0	7.4
20						1.5	2.5	3.5	6.7
25							2.4	3.4	6.2
32								2.8	5.0
40									4.8

¹⁾ Ограничение избирательности по току $I_{\mbox{\tiny 8}}$ при значении ниже 0,5 кА

^{.2)} Ограничение избирательности по току: I_s = номинальная отключающая способность х I_{cn} миниатюрного автоматического выключателя

Страница **30**

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ10 В НАПРАВЛЕНИИ РЕЗЕРВНОГО ПЛАВКОГО ПРЕДОХРАНИТЕЛЯ NEOZED

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ10кА и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки Ів [кА] (то есть при силе тока короткого замыкания Ів ниже Ів будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

 $I_{n}\left[A\right]$

*) согласно стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкого предохранителя **NEOZED***)

Характеристика С избирательности по току короткого замыкания в направлении плавкого предохранителя **NEOZED***)

35

BM10kA | NEOZED D01-D03 gL/gG

BM10ĸA	NEOZE	ED D01-	D03 gL/	gG					
Ļ [Α]	10	16	20	25	35	50	63	80	100
1.0	<0.5 ^{†)}	10.0%	10.0%	10.0°	$10.0^{(2)}$	10.0%	10.08	10.0^{23}	10.020
1.5	<0.5 ^{†)}	4.1	10.0%	10.0°	$10.0^{(2)}$	$10.0^{(2)}$	10.0^{23}	10.0^{23}	10.0^{20}
2.0	<0.51)	$< 0.5^{\circ})$	0.6	1.0	$10.0^{2)}$	$10.0^{2)}$	10.0^{23}	10.0^{23}	10.0^{20}
2.5	<0.51)	$< 0.5^{\circ})$	0.6	1.0	$10.0^{(2)}$	$10.0^{(2)}$	10.03	10.0^{23}	10.0^{20}
3.0	<0.51)	< 0.51)	0.5	1.0	$10.0^{(2)}$	$10.0^{(2)}$	10.0^{23}	10.0^{23}	10.0^{20}
3.5	<0.51)	$< 0.5^{\circ})$	0.5	0.9	7.0	$10.0^{(2)}$	10.0^{21}	10.0^{23}	10.0^{20}
4	<0.51)	< 0.51)	0.5	0.9	2.5	$10.0^{(2)}$	10.0^{2j}	10.0^{23}	10.0^{20}
5		< 0.51)	0.5	0.8	1.7	4.0	7.0	10.0^{23}	10.0^{23}
6		< 0.51)	0.5	0.8	1.6	3.6	6.0	10.0^{23}	10.0^{20}
8			0.5	8.0	1.4	2.8	4.3	8.2	10.020
10			0.5	0.7	1.3	2.4	3.4	6.0	10.020
13			< 0.51)	0.7	1.2	2.3	3.2	5.3	10.021
16				0.6	1.1	2.2	2.9	4.6	10.0
20					1.1	2.1	2.8	4.4	9.3
25					1.1	2.0	2.7	4.2	8.7
32						2.0	2.6	4.0	8.0
40							2.5	3.8	7.5
50							2.3	3.4	6.7
63									6.2

93	6.2
Характеристика D избирательности по току короткого замыкания в направлении плав предохранителя NEOZED *)	кого

BM10ĸA	NEOZE	ED DQ1-	D08 gL/	gG					
[A]	10	16	20	25	35	50	63	80	100
0.5	<0.51)	$10.0^{2)}$	$10.0^{(2)}$	$10.0^{(2)}$	$10.0^{2)}$	$10.0^{2)}$	10.0^{21}	$10.0^{2\dagger}$	10.0^{20}
1.0	<0.51)	$<\!0.5^{()}$	0.7	1.3	$10.0^{2)}$	$10.0^{2)}$	$10.0^{2)}$	$10.0^{2)}$	10.0^{20}
1.5	<0.51)	$< 0.5^{()}$	0.6	0.9	2.8	9.0	$10.0^{2\dagger}$	$10.0^{2\dagger}$	10.0^{20}
2.0	<0.51)	$< 0.5^{()}$	0.6	0.8	2.2	6.7	10.0^{21}	10.0^{21}	10.0^{20}
2.5	⊲0.51)	$\!<\!0.5^{()}$	0.5	0.7	1.9	5.4	10.0^{21}	10.0^{21}	10.0^{20}
3.0	<0.51)	<0.51)	0.5	0.7	1.8	4.8	9.3	$10.0^{3)}$	10.0^{30}
3.5	<0.51)	<0.51)	0.5	0.7	1.7	4.7	8.6	10.0^{21}	10.0^{20}
4		<0.51)	0.5	0.7	1.7	4.6	7.7	10.0^{21}	10.0^{20}
5		<0.51)	< 0.51)	0.6	1.5	3.5	5.8	10.0^{2j}	10.0^{20}
6			<0.51)	0.5	1.3	2.9	4.5	9.0	10.0^{20}
8			<0.51)	0.5	1.2	2.4	3.5	6.0	10.0^{20}
10				0.5	1.1	2.2	3.0	5.0	10.0^{20}
13					1.1	2.1	2.9	4.6	10.0^{20}
16						1.9	2.6	3.9	9.0
20						1.7	2.3	3.5	8.0
25							2.2	3.4	7.5
32								2.9	6.0

0.75	< 0.51)	$10.0^{(2)}$	10.0%	10.0^{21}	10.0^{21}	10.02	10.0%	10.0%	10.0%
1.0	< 0.51)	$10.0^{(2)}$	10.0^{21}	10.0^{21}	10.0^{21}	10.0^{2}	10.0^{23}	10.0%	10.0%
1.5	<0.51)	0.5	0.6	0.9	10.0^{21}	10.0^{2}	10.0^{20}	10.0%	$10.0^{(2)}$
2.0	<0.51)	$<0.6^{(1)}$	0.6	0.7	10.0^{21}	10.02)	10.02	10.0%	10.0%
2.5	<0.51)	<0.5 ¹⁾	0.5	0.7	10.0^{21}	10.02)	10.0^{23}	10.0%	10.0%
3.0	<0.5 ¹⁾	$< 0.5^{(1)}$	$<\!0.5^{(1)}$	0.6	1.9	5.2	10.02)	10.0%	10.0^{20}
3.5	<0.51)	$< 0.5^{(1)}$	$<\!\!0.5^{(1)}$	0.6	1.8	4.7	9.5	10.0%	10.02)
4	<0.51)	<0.6 ¹⁾	$<\!\!0.6^{(1)}$	0.6	1.6	4.0	7.6	10.0%	10.02)
5		<0.5 ¹⁾	$<0.5^{(1)}$	0.5	1.3	3.1	5.7	$10.0^{()}$	$10.0^{(2)}$
6		<0.5 ¹⁾	$<0.5^{(1)}$	$<0.5^{(1)}$	1.2	2.7	4.5	10.02)	10.02)
8		<0.5 ¹⁾	$<\!\!0.5^{(1)}$	$<0.5^{(1)}$	1.2	2.5	4.0	8.6	10.02)
10			<0.5 ¹⁾	<0.5 ¹⁾	1.2	2.3	3.1	5.4	$10.0^{(2)}$
13					1.1	22	3.0	4.9	10.02)
16					1.1	2.1	2.8	4.4	9.5
20					1.0	2.0	26	4.0	8.3
25						1.9	2.5	3.8	7.8
32							2.5	3.7	7.3
40								3.5	7.0
50									6.5
63									

- 1) Ограничение избирательности по току $I_{\mbox{\tiny 8}}$ при значении ниже 0,5 кА
- 2) Ограничение избирательности по току: $l_{\rm e}$ номинальная отключающая способность х $l_{\rm en}$ миниатюрного автоматического выключателя

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ВМ10 В НАПРАВЛЕНИИ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ NF-00

В случае короткого замыкания возникает избирательность между миниатюрными автоматическими выключателями ВМ10кА и расположенными перед ними плавкими предохранителями, которые ограничивают значение тока перегрузки I_s [кА] (то есть при силе тока короткого замыкания I_s ниже I_s будет отключаться только миниатюрный выключатель; при более высокой силе тока будут срабатывать оба устройства).

*) согласно стандарту EN 60898 D.5.2.b

вставки **NH-00***)

Характеристика С избирательности по току короткого замыкания в направлении плавкой вставки **NH-00***)

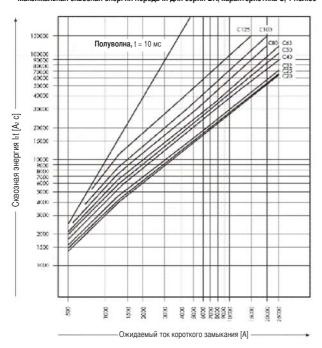
Страница 31

BM10kA	NH-0	0 gL/g	3 3										BM10kA	NH-0	0 gLĄ	βG									
Ļ[Α]	18	20	25	32	35	40	50	63	80	100	125	160	[, [A]	16	20	25	32	35	40	50	63	80	100	125	150
1.0	0.9	$10.0^{5)}$	10.02	10.0%	$10.0^{(1)}$	10.03	10.0%	10.02	$10.0^{(j)}$	10.02	10.0%	10.0^{2}	0.75	10.0%	10.021	10.0%	10.0^{21}	10.02	10.0%	10.02	$10.0^{(6)}$	10.0^{2}	10.0%	$10.0^{(1)}$	10.04
15	0.8	$10.0^{(1)}$	10.02	10.05	10.0^{21}	10.03	10.0°	10.02	$10.0^{(1)}$	10.0^{23}	10.0%	10.0^{20}	1.0	0.9	10.0^{21}	10.0%	10.0^{21}	10.04	10.0%	10/0 ²⁰	10.0 ⁽¹⁾	10.0^{23}	10.0%	$10.0^{(1)}$	10.07
2.0	< 0.510	0.5	1.0	2.5	10.0^{21}	10.0 ²	$10.0^{()}$	10.02	$10.0^{(1)}$	10.0^{23}	10.0 ²⁾	10.0^{20}	1.5	⊲0.5 ¹⁾	0.6	1.3	42	10.0 ²	$10.0^{(1)}$	10.02	$10.0^{(2)}$	10.0^{23}	10.0 ²	$10.0^{(1)}$	10.04
25	<0.5%	0.5	1.0	23	10.0^{23}	10.03	10.0%	10.02	10.0 ⁽¹⁾	10,020	10.0%	$10.0^{2)}$	2.0	⊲0.5 ¹⁾	0.6	1.0	2.5	10.0 ²	10.0%	10/02	$10.0^{(3)}$	10.0^{2}	10.0%	$10.0^{(3)}$	10.02
3.0	< 0.510	0.5	0.8	2.1	8.0	10.08	10.0%	10.02	10.0 ²⁾	10.0^{23}	10.0 ²)	10.0^{20}	2.5	⊲0.5 ^{t)}	0.5	1.0	2.1	10.0 ²	10.0^{20}	10/0 ²³	$10.0^{(1)}$	10.02	10.0%	10.0^{2}	10.02
3.5	< 0.510	0.5	0.9	1.8	5.5	10.0 ⁴	10.0^{\odot}	10.02	$10.0^{(1)}$	10.023	10.0 ²⁾	10.0^{20}	3.0	⊲0.5 ^{t)}	<0.51)	0.7	1.2	1.8	28	4.7	6.6	10.0^{23}	10.0 ²	$10.0^{(1)}$	10.04
4	< 0.5%	⊲05 ¹⁾	8.0	1.3	2.3	4.3	$10.0^{()}$	10.02	$10.0^{(1)}$	10.0^{23}	10.0%	10.0^{2}	3.5	⊲0.5 ¹⁾	<0.51)	0.7	1.1	1.7	2.4	42	6.0	10.0^{2}	10.0%	$10.0^{(1)}$	10.03
5	< 0.510	⊲05 ¹⁾	0.7	1.1	1.8	2.2	3.6	4.8	8.8	10.0^{23}	10.0 ²)	10.0^{20}	4	<0.5 th	<0.510	0.7	1.0	1,5	2.1	3.6	5.0	10.0	10.0 ²	10.0^{2}	10.07
6	< 0.510	$<0.5^{11}$	0.7	1.1	1.5	2.0	3.3	4.3	7.6	10,023	10.0 ²⁾	10.0^{20}	5	⊲0.5 ^{t)}	<0.510	0.6	0.8	12	1.7	2.8	3.6	8.7	10.0 ²	$10.0^{(1)}$	10.04
8	<0.5%	⊲05 ¹⁾	0.6	1.0	1.3	1.7	2.6	3.3	5.2	10.0^{23}	10.0%	10.0^{20}	6	⊲0.5 ¹⁾	<0.51)	0.5	0.8	12	1.5	2.5	3.3	5.7	10.0 ²	$10.0^{(1)}$	10.02
10		⊲05 ¹⁾	0.6	0.9	1.2	1,5	2.2	2.7	4.0	9.0	10.0 ²⁾	10.0^{20}	8	⊲0.5 ^{t)}	<0.51)	0.5	0.8	1.1	1.5	2.3	2.9	4.9	10.08	10.0^{23}	10.02
13		d) 5 ¹⁾	0.6	0.8	1.1	1.4	2.1	2.6	3.8	7.9	10.0 ²⁾	10.0^{23}	10			0.5	0.7	1.0	1.4	2.0	25	3.8	8.0	$10.0^{(1)}$	10.04
16			0.5	0.7	1.0	1,3	1.9	2.4	3.4	6.4	9.3	10.0^{2}	13					1.0	1.3	1,9	24	3.6	7.0	10,0%	10.02
20				0.7	1.0	1,3	1.9	2.4	3.3	6.0	8.7	10.0^{20}	18					1.0	1.3	1.8	2.3	3.3	6.0	8.8	10.07
25				0.7	1.0	1.3	1.8	2.3	3.2	5.7	8.0	10.0^{20}	20					1.0	1.2	1.7	22	3.2	5.5	7.7	10.04
32					0.9	1.2	1.7	2.2	3.1	5.4	7.6	10.0^{20}	25							1.6	21	3.0	5.2	7.3	10.02
40								2.1	3,0	5.1	7.2	10.0^{20}	32								21	2.9	5.0	7.0	10.04
50								1.9	28	4.7	6.6	9.5	40									2.8	4.8	6.7	10.0
63										4.4	8.3	8.6	50										4,5	6.3	9.5
													63											5.9	8.4

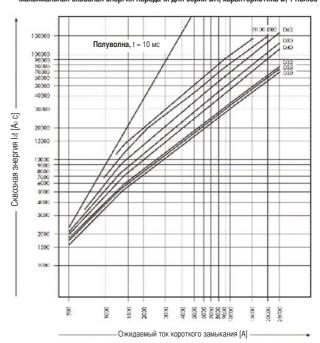
Характеристика D избир плавкой вставки NH-00*) ирательности по току короткого замыкания в направлении

BM10kA	NH-0	0 gL/g	gG.									
Į, [A]	18	20	25	32	35	40	50	63	80	100	125	160
0.5	2.1	$10.0^{()}$	10.02	10.0 ²	10.0^{21}	10.0 ²	$10.0^{(3)}$	10.0^{23}	10.0 ⁽³⁾	10.0^{23}	10.0 ²⁰	10.0^{20}
1.0	< 0.510	0,6	1.4	4.3	10.0^{21}	10.0 ²	10.0^{\odot}	10.02	10.0 ^{Z)}	10.0^{23}	10.0 ²⁾	10.0^{20}
15	< 0.5%	$\pm 0.5^{(j)}$	0.9	1.6	2.7	4.0	8.0	10.0 ²⁴	10.0 ⁽¹⁾	10.0^{23}	10.0 ⁽⁰⁾	10.0^{2}
2.0	< 0.510	⊲05 ¹⁾	8.0	1.3	2.1	3.1	6.0	8.6	10.0 ⁽³⁾	10.0^{23}	10.0 ²⁾	10.0^{20}
25	< 0.510	<0.5 ¹⁾	0.7	1.2	1.8	2.6	4.8	6.9	$10.0^{(1)}$	10.0^{23}	10.0 ^{Z)}	10.0^{20}
3.0	< 0.5%	405%	0.7	1.1	1.7	2.4	4.3	6.0	10.0 ⁵⁾	10.0^{25}	10.0 ²⁰	10.0^{2}
3.5	< 0.510	⊲05 ¹⁾	0.7	1.1	1.7	2.4	4.2	5.6	10.0 ²⁾	10.0^{23}	10.0 ²⁾	10.0^{20}
4	< 0.510	$\triangleleft 0.5^{1i}$	0.7	1.0	1.6	2.2	3.6	5.2	10.0	10.0^{23}	10.0 ²⁾	10.0^{23}
5		⊲05 ¹⁾	0.6	0.9	1.4	1.9	3.2	4.1	7.1	10.0^{23}	10.0 ⁽⁰⁾	10.0^{2}
6		⊲05 ¹⁾	0.5	0.8	1.2	1.6	2.6	3.3	5.5	10.0^{23}	10.0 ²⁾	10.0^{20}
8			0.5	0.8	1.1	1.5	2.2	2.7	4.1	8.7	10.0 ²⁾	10.0^{23}
10			0.5	0.7	1.0	1.3	1.9	2.5	3.6	7.2	$10.0^{(3)}$	10.0^{2}
13					1.0	1.3	1.9	2.3	3.4	6.5	9.5	10.0^{20}
16						1.1	1.6	2.0	3.0	5.5	6.0	10.0^{23}
20							1.4	1.8	28	5.0	7.5	10.0^{20}
25								1.8	27	4.8	7.0	10.0^{20}
32									24	4.1	6.2	93
40										4.0	6.0	9.0

- 1) Ограничение избирательности по току l_n при значении ниже 0,5 кA 2) Ограничение избирательности по току: l_n номинальная отключающая способность х l_n миниатюрного автоматического выключателя

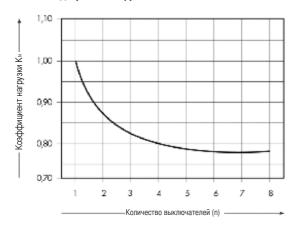


Страница **32**


■ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Измерено согласно стандарту EN 60898

Максимальная сквозная энергия передачи для серии BR, характеристика C, 1 полюс


Максимальная сквозная энергия передачи для серии BR, характеристика D, 1 полюс


■ ДОПУСТИМАЯ НАГРУЗКА

- Характеристики справедливы для однополюсных выключателей серии BR
- Допустимая нагрузка для надежного срабатывания при окружающей температуре эксплуатации Т (°C) и п выключателях t I□= I₀KT(T)KN(N)

Допустимая нагрузка для блочного монтажа

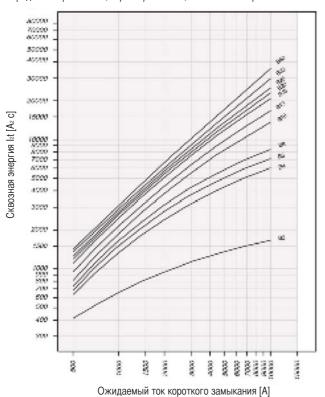
Воздействие окружающей температуры при эксплуатации

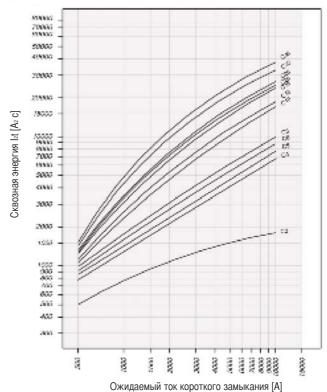
■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ D01, D02, D03

Номинальный ток	I. A*)		Номи	нальный ток плаві	кого предохраните	ля в A gL	
TIOMPHICADIDIDIP TOK	, //	25	35	50	63	80	100
	20	0,5	1,0	2,0	2,9	3,9	7,6
	25		1,0	1,9	2,8	3,8	7,3
	32		1,0	1,8	2,7	3,6	7,0
c-	40			1,6	2,2	3,0	5,6
•- Карактеристика	50				2,1	2,8	5,2
ларактеристика	63			2,0 2,9 3,9 1,9 2,8 3,8 1,8 2,7 3,6 1,6 2,2 3,0 2,1 2,8 2,7 2,7 2,8 2,8 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9		4,8	
	80					4,3	
	100						-2
	125					80 3,9 3,8 3,6 3,0 2,8 2,7 3,4 3,2 3,0	
	20	0,5	0,9	1,7	2,5	3,4	6,7
	25		0,9	1,6	2,3	3,2	6,2
	32		0,9	1,5		3,0	6,0
D-	40			1,4	2,0	2,6	4,7
Карактеристика	50				1,8		4,3
	63						3,7
	80						3,1
	100						

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ NH РАЗМЕРА 00

Номинальный ток	In. A*)			Н	оминальны	й ток плаві	кого предох	ранителя в	s A gL		
. 10	, ,	25	35	40	50	63	80	100	125	160	200
	20	0,5	1,0	1,3	1,9	2,7	3,7	6,7	17,0		
	25		0,9	1,3	1,8	2,6	3,5	6,5	17,0	25,0	
	32		0,9	1,2	1,7	2,4	3,3	6,0	15,0	23,0	
c-	40				1,4	2,1	2,9	4,8	12,0	18,0	
_	50					1,9	2,7	4,5	11,0	17,0	
Характеристика	63							4,2	10,0	15,0	
	80							3,8	8,5	12,0	
	100								7,0	10,0	
	125									7,5	
	20	<0,5	0,8	1,1	1,5	2,3	3,1	5,6	16,0	25,0	
	25		0,7	1,0	1,4	2,1	3,0	5,3	14,0	23,0	
	32		0,7	1,0	1,3	2,1	2,9	5,0	13,0	22,0	
D-	40				1,1	1,8	2,5	4,2	10,0	15,0	25,0
Характеристика	50					1,6	2,3	3,8	8,5	13,0	22,0
	63						2,1	3,2	7,0	10,5	18,0
	80							2,8	5,5	8,4	15,0
	100								4,8	7,5	12,5




Страница **34**

■ ПЕРЕДАЧА ЭНЕРГИИ B0LF-../1N

Передача энергии BOLF, характеристика B, 1 полюс + нейтраль

Передача энергии BOLF, характеристика С, 1 полюс + нейтраль

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ BOLF-../1N В НАПРАВЛЕНИИ DIAZED

В случае короткого замыкания возникает избирательность между защитными устройствами BOLF ../1N и связанными плавкими резервными предохранителями, которые ограничивают значение тока перегрузки Is [кА] (то есть при силе тока короткого замыкания lks ниже Is будет отключаться только токовый предохранитель (RCB)/миниатюрный выключатель (MCB); при более высокой силе тока будут срабатывать оба устройства).

*) согласно стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкого предохранителя **DIAZED***)

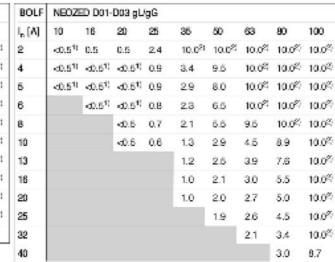
BOLF	DIAZE	D DII-DI	V gL/g	βG					
ί, [A]	10	16	20	25	35	50	63	80	100
2	<0.51)	<0.51)	2.2	8.5	10.02)	10.02)	10.0^{23}	10.0^{23}	10.020
4	$\approx\!\!0.5^{\dagger)}$	<0.51)	0.7	1.2	3.7	10.0	10.0^{21}	10.0^{21}	10.020
6		<0.51)	0.7	1.0	2.9	6.9	10.0^{21}	10.0^{21}	10.0^{21}
8		<0.51)	0.6	1.0	2.4	5.1	10.0^{23}	10.0^{23}	10.020
10			0.6	0.9	1.9	3.3	7.0	10.0^{23}	10.021
13			0.5	0.7	1.6	2.8	5.7	9.0	10.020
16				0.7	1.4	2.4	4.4	7.0	10.021
20					1.3	2.2	4.0	6.3	10.020
25					1.3	2.1	3.8	5.8	10.020
32						2.0	3.5	5.2	9.6
40							3.1	4.5	8.1

Характеристика С избирательности по току короткого замыкания в направлении плавкого предохранителя **DIAZED***)

BOLF	DIAZE	D DII-D	V gUg	G					
I _n [A]	10	16	20	25	36	50	63	80	100
2	<0.511	$< 0.6^{(1)}$	1.7	6.0	10.081	10.04	10.0%	10.0%	10.0^{2}
4	<0.511	<0.61)	0.7	1.3	4.2	8.5	10.0%	10.0%	10.0^{2}
5	<0.51)	$< 0.5^{(1)}$	0.6	1.1	3.6	7.0	10.0%	10.0%	10.0°
6		<0.6 ¹)	0.6	1.0	2.9	5.8	10.0%	10.0%	10.0^{2}
8		<0.51)	<0.5	0.9	2.5	4.8	10.0%	10.0%	10.0^{2}
10			<0.6	0.7	1.5	2.6	5.3	9.0	10.02
13					1.4	2.3	4.6	7.6	10.0^{2}
16					1.2	1.8	3.4	5.5	10.02
20					1.2	1.7	3.1	5.0	10.0^{2}
25						1.6	2.9	4.6	10.02
32							23	3.4	7.7
40								2.9	6.2

¹⁾ Ограничение избирательности по току ls при значении ниже 0,5 кА

Ограничение избирательности по току: Is = номинальная отключающая способность х Icn миниатюрного автоматического выключателя Затемненные области: без избирательности


■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ B0LF-../1N В НАПРАВЛЕНИИ NEOZED

В случае короткого замыкания возникает избирательность между защитными устройствами BOLF ../1N и связанными плавкими резервными предохранителями, которые ограничивают значение тока перегрузки Ів [кА] (то есть при силе тока короткого замыкания Ів ниже Ів будет отключаться только токовый предохранитель (RCB)/миниатюрный выключатель (MCB); при более высокой силе тока будут срабатывать оба устройства).

*) согласно стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкого предохранителя **NEOZED***)

Характеристика С избирательности по току короткого замыкания в направлении плавкого предохранителя **NEOZED***) Страница **35**

BOLF NEOZED D01-D08 gL/gG Ļ [Α] 10 16 20 25 35 50 63 80 100 2 <0.5¹⁾ 0.7 1.6 3.3 10.00 10.00 10.00 10.00 10.025 4 <0.51) <0.51) 0.6 10.08 10.021 0.9 2.9 10.0 10.021 6 < 0.57 0.5 0.8 10.07 10.0^{21} 10.0^{21} 8 10.0^{21} 10.0^{21} 10.021 0.6 0.8 2.0 6.0 10 0.5 0.8 3.7 6.0 10.08 10.021 1.6 13 0.6 0.7 3.0 4.7 9.0 10.0^{21} 10.021 16 0.6 1.2 28 2.0 7.0 20 1.2 2.5 3.6 6.2 10.0^{21} 10.0^{21} 25 1.2 2.3 3.3 5.7 32 10.0^{21} 2.3 3.1 6.1 40 4.5 9.5

■ ИЗБИРАТЕЛЬНОСТЬ ЦЕПИ КОРОТКОГО ЗАМЫКАНИЯ B0LF-../1N В НАПРАВЛЕНИИ NH-00

В случае короткого замыкания возникает избирательность между защитными устройствами ВОLF ../1N и связанными плавкими резервными предохранителями, которые ограничивают значение тока перегрузки Ів [кА] (то есть при силе тока короткого замыкания Іва ниже Ів будет отключаться только токовый предохранитель (RCB)/миниатюрный выключатель (MCB); при более высокой силе тока будут срабатывать оба устройства).

*) согласно стандарту EN 60898 D.5.2.b

Характеристика В избирательности по току короткого замыкания в направлении плавкого предохранителя **NH-00***)

BOLF	NH	-00 gl	/gG									
Ļ [A]	18	20	25	32	35	40	50	63	80	100	125	160
2	<0.5%	1.1	3.6	10.0%	$10.0^{2)}$	10.0%	10.0 [©]	10.021	10.0 ⁽⁰⁾	10.0^{21}	10.0%	10.0%
4	<0.5%	0.5	0.9	1.6	2.8	4.4	10.0 [©])	10.02	10.0 ⁽⁰⁾	10.0^{21}	10.0 ⁽⁰⁾	10.0%
6	<0.50	0.5	6.0	1.4	22	3.3	7.0	10.0^{21}	$10.0^{(1)}$	10.0^{21}	$10.0^{(0)}$	10.09
8	<0.5%	$<\!\!0.5^{(j)}$	0.7	1.0	19	2.8	5.3	7.8	10.0%	10,021	10.0%	10.09
10		$40.5^{(j)}$	0.7	0.9	1.5	2.1	3.4	4.3	7.3	10.021	$10.0^{(1)}$	10.08
13		$<\!\!0.5^{(j)}$	0.6	8.0	1.4	1.8	28	3,6	5.7	10,021	$10.0^{()}$	10.08
18			0.6	0.7	12	1.5	2.4	3.0	4.5	10,023	10.0 ²)	10.09
20				0.7	1.1	1.5	2.2	2.8	42	9.2	10.0 ²)	10.00
25				0.7	1.1	1.4	2.1	2.6	40	8.2	$10.0^{()}$	10.0 [©]
32					1.0	1.4	20	2.5	3.7	7.1	10.0 ²⁾	10.02
40								2.3	3.4	6.2	8.8	10.0^{2}

Характеристика С избирательности по току короткого замыкания в направлении плавкого предохранителя **NH-00***)

BOLF	NH	-00 gt	/gG									
l, [A]	16	20	25	32	35	40	50	63	80	100	125	150
2	$\triangleleft 0.5^{()}$	0.6	2.6	10.0^{21}	10.0%	$10.0^{()}$	10.0^{20}	10.0 ⁵⁾	10.029	10.0%	10.0 ²⁾	10.0%
4	⊲0.5 ^{†)}	<0.51)	0.9	1.8	3.2	4.6	8.7	10.0 ⁵)	10.02	10.0%	10.0 ²⁾	10.07
5	$40.5^{()}$	$<0.5^{(1)}$	0.8	1.6	2.7	4.1	7.2	9.7	10.0^{2}	10.0^{2}	10.0^{23}	10.6%
6	$40.5^{()}$	<0.5 ⁽¹⁾	0.7	1.3	2.2	3.3	5.9	8.0	10.03	10.0%	10.08)	10.0%
8	$40.5^{()}$	$<0.5^{(1)}$	0.6	1.1	1.9	2.8	5.0	6.7	10.03	10.0%	10.0%)	10.0%
10			0.5	8.0	1.2	1.7	2.7	3.4	5.5	$10.0^{\frac{12}{4}}$	$10.0^{(3)}$	10.0%
13					1.1	1.5	2.3	29	4.7	10.0^{2}	$10.0^{(3)}$	10.02
16					1.0	1.3	1.8	2.3	3.7	8.7	10.0%)	10.02
20					0.3	1.1	1.7	22	3.4	8.0	10.05)	10.02
25							1.6	21	3.2	7.2	10.02)	10.04
32								1.7	2.6	5.3	9.0	10.04
40									2.4	4.5	7.5	10.0

¹⁾ Ограничение избирательности по току ls при значении ниже 0,5 кA

Ограничение избирательности по току: Is = номинальная отключающая способность x Icn миниатюрного автоматического выключателя Затемненные области: без избирательности

КОМПАНИЯ

ЦЕНТРАЛЬНЫЙ ОФИС

SCHRACK TECHNIK GMBH Seybelgasse 13, A-1230 Vienna ТЕЛЕФОН +43(0)1/866 85-0 Факс +43(0)1/866 85-1520 E-MAIL export@schrack.com

ПОДРАЗДЕЛЕНИЯ КОМПАНИИ SCHRACK

БЕЛЬГИЯ SCHRACK TECHNIK B.V.B.A Twaalfapostelenstraat 14 BE-9051 St-Denijs-Westrem ТЕЛЕФОН +32 9/384 79 92 ΦAKC +32 9/384 87 69

E-MAIL info@schrack.be

ХОРВАТИЯ SCHRACK TECHNIK D.O.O. HR-10000 Zagreb ТЕЛЕФОН +385 1/605 55 00 ФАКС +385 1/605 55 66 E-MAIL schrack@schrack.hr

SCHRACK TECHNIK POLSKA SP.Z.O.O. ul. Annopol 3 PL-03-236 Warszawa ТЕЛЕФОН +48 22/331 48 31 ΦAKC +48 22/331 48 33 E-MAIL se@schrack.pl

ПОЛЬША

РУМЫНИЯ

SCHRACK TECHNIK SRL Str. Simion Barnutiu nr. 15 RO-410204 Oradea ТЕЛЕФОН +40 259/435 887 ΦAKC +40 259/412 892 E-MAIL schrack@schrack.ro

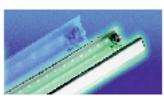
СЕРБИЯ

SCHRACK TECHNIK D.O.O. Kumodraska 260 RS-11000 Beograd ТЕЛЕФОН +38 1/11 309 2600 ΦAKC +38 1/11 309 2620 E-MAIL office@schrack.co.yu

СЛОВАКИЯ

SCHRACK TECHNIK SPOL. SR.O. Langsfeldova 2 SK-03601 Martin ТЕЛЕФОН +42 1/43 422 16 41 ΦAKC +42 1/43 423 95 56 E-MAIL martin@schrack.sk

СЛОВЕНИЯ


SCHRACK TECHNIK D.O.O. Glavni trg 47 SLO-2380 Slovenj Gradec ТЕЛЕФОН +38 6/2 883 92 00 ΦAKC +38 6/2 884 34 71 E-MAIL schrack.sg@schrack.si

РЕСПУБЛИКА ЧЕХИЯ

SCHRACK TECHNIK SPOL. SR.O. Dolnomecholupska 2 CZ-10200 Praha 10 - Hostivar ТЕЛЕФОН +42(0)2/810 08 264 ΦAKC +42(0)2/810 08 462 E-MAIL praha@schrack.cz

ВЕНГРИЯ

SCHRACK TECHNIK KFT. Vidor u. H-1172 Budapest ТЕЛЕФОН +36 1/253 14 01 ΦAKC +36 1/253 14 91 E-MAIL schrack@schrack.hu

K-MCBS--E7 WWW.SCHRACK.COM