

Легкость управления электроприводами **ЛИФТОВ**

Частотные преобразователи LS Industrial Systems серии SV-iV5

Серия SV-iV5: 2,2 – 375 кВт, 3 фазы 380 – 480 В

№ Общие характеристики

- Высокий крутящий момент на нулевой скорости
- Прецизионное управление скоростью и позиционированием
- Автоматическое определение параметров двигателя
- Контроль позиции по сигналу с энкодера
- Специальные функции:
 - Уравновешивание нагрузки
 - Функция расчета диаметра / конуса
 - Функция компенсации инерции
 - Функция быстрой остановки и пр.
- Встроенный тормозной модуль (2,2 22 кВт)

- Съемная панель управления
- Съемные клеммы управляющих входов
- Доп. платы расширения I/O (опция):
 - Плата контроллера привода лифта
 - Плата энкодера (открытый коллектор)
 - Плата синхронизации (контроль скорости/положения)
 - Энкодер SinCos
- Интерфейсные платы (опция):
 - RS485 (LS Bus / Modbus RTU)
 - Profibus-DP
 - DeviceNet
- Программное обеспечение для мониторинга и эксплуатации

Информация для заказа

Частотные преобразователи LS Industrial Systems серии SV-iV5

Технические характеристики

	SV □□□ iV5-4 □		022	037	055	075	110	150	185	220	300	370		
Мощность двигателя		(кВт)	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37		
дынителя	Нагрузочная способность	(кВА)	4.5	6.1	9.1	12.2	18.3	22.9	29.7	34.3	46	57		
Выходные	Ток при полной нагрузке	(A)	6	8	12	16	24	30	39	45	61	75		
араметры	Напряжение	(B)		ы 380 — 4				30	3,	13	0.	, ,		
	RPM	(-)		0 – 3600 об/мин										
Входные	Напряжение	(B)	Три фазы 380 – 480 B (+ 10%, – 10 %)											
параметры	Частота (Гц)		50 – 60 Γμ (± 5%)											
Dos	Пластиковый корпус (Mold)		6	6	7.7	7.7	13.7	13.7	20.3	20.3				
Bec	Металлический корпус	(кг)			14	14	28	28	28	28	42	42		
Иолепь: 9	SV □□□ iV5-4 □		450	550	750	900	1100	1320	1600	2200	2800	3150	375	
Мощность двигателя Выходные параметры		(5)												
		(кВт)	45	55	75	90	110	132	160	220	280	315	375	
	Нагрузочная способность	(ĸBA)	70	85	116	140	170	200	250	329	416	468	557	
	Ток при полной нагрузке	(A)	91	110	152	183	223	264	325	432	546	614	731	
	Напряжение	(B)		ы 380 – 4	80 B									
	RPM	(5)		0 об/мин	00 D / . 10	0/ 100	()							
Входные	Напряжение	(B)			80 B (+ 10	%, – IU %	0)							
параметры	Частота	(Гц)		Гц (± 5%)		00	00	112	112	175	2.42	200	300	
Bec	Металлический корпус	(кг)	63	63	68	98	98	112	112	175	243	380	380	
	Способ управления		Полное	векторно	е управлеі	ние с обра	тной связі	ью (энкод	ep)					
	Дискретность настройки частоты		Полное векторное управление с обратной связью (энкодер) Цифровая: 0.1 об/мин / Аналоговая: ± 0.1 % от макс. частоты на выходе											
	Точность настройки частоты		Цифровая: \pm 0.01 (0 $-$ 40° C) от макс. частоты на выходе / Аналоговая: \pm 0.02 (25 \pm 10° C) от макс. частоты на выход											
		"	цифрова	ія: ± 0.01 ($0 - 40^{\circ} \text{ C}) \text{ o}^{-1}$	гмакс. час	готы на вых	коде / Анал	оговая: ± 0	$.02(25 \pm 1)$	0° С) от мак	кс. частоты	на выхо	
	Отсечка частоты ASR	,	50 Гц	ıя: ± 0.01 (0 – 40° C) o	г макс. част	готы на вы)	коде / Анал	оговая: ± 0	.02 (25 ± 1	0° С) от мак	кс. частоты	на выхо	
/правление	Отсечка частоты ASR Точность поддержания мом	иента	50 Гц 3 %		·					.02 (25 ± 1	0° С) от мак	кс. частоты	на выхо,	
/правление	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм	мента пожения	50 Гц 3 % 0,00 — 6	6000,0 сек	(единица	времени	может бы	ть устаное		.02 (25 ± 1	0° С) от мак	кс. частоты	на выхо	
/правление	Отсечка частоты ASR Точность поддержания мол Выбор времени разгона/торм Комбинации времени разгон	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби	000,0 сек інации за	(единица дания вре	времени	может бы	ть устаное		.02 (25 ± 1	0° С) от мак	кс. частоты	на выхо	
/правление	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн	000,0 сек інации за ая • S - к	(единица дания вре ривая	времени мени разі	может бы гона / торм	ть установ можения	влена)			кс. частоты	на выхо,	
/правление	Отсечка частоты ASR Точность поддержания мол Выбор времени разгона/торм Комбинации времени разгон	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого	000,0 сек інации за ая • S - к овый сигн	(единица дания вре ривая ал: - 10 —	времени мени разі 10 В / 4 —	может бы ⁻ она / торм 20 мА / Ці	ть установ можения ифровой с	влена) игнал: пул			кс. частоты	на выход	
Входной	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много	5000,0 сек інации за ая • S - к овый сигн (AI1, AI2, I 0 B / 0 — 10 офункцион	(единица дания вре ривая	времени мени разі 10 В / 4 — па (AI4, AI5 г / 4 — 20 м дов по выб	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м бору	ть установ иожения ифровой с ширения I/ иА / (AI3, AI	влена) игнал: пул О 5 (плата ра	пьт управ.	ления I/0): выбор	двигателя	NTC/PTC	
Управление Входной сигнал	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много АІЗ, АІЗ: FX, RX, I	5000,0 сек інации за ая • S - к овый сигн (AI1, AI2, 0 B / 0 — 10 офункцион двигатель ЗХ, RST, Р ² гофункции	(единица дания вре ривая ал: - 10 — Al3): 2 кана. В / 10 — 0 В альных вхо NTC совмес 1 — Р7 ональных	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выстим только	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м іору с двигател	ть установ иожения ифровой с ширения I/ иА / (AI3, AI	влена) игнал: пул О 5 (плата ра	пьт управ.	ления I/0): выбор	двигателя	NTC/PTC)	
Входной сигнал	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много АІЗ, АІЗ: FX, RX, I 40 много 2 канал - 10 — 1	5000,0 сек інации за ая • S - к і (АІ1, АІ2, і і В / 0 – 10 офункцион двигатель ЗХ, RST, Р гофункции а (АО1, А(0 В / 10 –	(единица дания вре ривая ал: - 10 — Al3): 2 кана. В / 10 — 0 В альных вхо NTC совмес 1 — Р7 ональных	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выс тим только входов по	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м бору с двигател о выбору	ть установ можения ифровой с ширения I/ лА / (AI3, AI ем LS-OTIS	влена) игнал: пул О 5 (плата ра	пьт управ.	ления I/0): выбор	двигателя	NTC/PTC	
Входной сигнал Выходной	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход Контактный вход	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много А13, А15: FX, RX, I 40 мног 2 канал - 10 — 1 40 много Многоф	5000,0 сек інации за ая • S - к овый сигн (AI1, AI2, и В / 0 — 10 офункцион а (AO1, AC 0 B / 10 — гофункциона	(единица дания вре ривая (ал: - 10 — Al3): 2 кана. В / 10 — 0 Е альных вхо NTC совмес 1 — Р7 ональных O2) - 10 В / 0	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выб тим только входов по — 10 В / 10 выходов г	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м бору с двигател о выбору) — 0 В по выбору выход: 2	ть установ можения ифровой с ширения I/ nA / (AI3, AI ем LS-OTIS	влена) игнал: пул О 5 (плата ра (двигатели	пьт управ. сширения NTC и PTC <u>г</u>	ления I/0): выбор	двигателя	NTC/PTC	
Входной сигнал Выходной	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход Контактный вход	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много А13, А15: FX, RX, I 40 много Многоф Вывод о	5000,0 сек інации за ая • S - к овый сигн (AI1, AI2, и В / 0 — 10 офункцион а (AO1, AC 0 B / 10 — гофункциона	(единица дания вре ривая іал: – 10 — Al3): 2 кана. В / 10 — 0 Е альных вхо NTC совмес 1 — Р7 ональных 22) – 10 В / 0	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выб тим только входов по — 10 В / 10 выходов г	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м бору с двигател о выбору) — 0 В по выбору выход: 2	ть установ можения ифровой с ширения I/ nA / (AI3, AI ем LS-OTIS	влена) игнал: пул О 5 (плата ра (двигатели	пьт управ. сширения NTC и PTC <u>г</u>	ления I/0): выбор	двигателя	NTC/PTC	
Входной	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход Контактный вход Контактный выход Открытый коллектор	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много А13, А15: FX, RX, I 40 мног 2 канал - 10 — 1 40 много Вывод о 1 канал	6000,0 сек пации за ая • S - к овый сигн (АІ1, АІ2, и овункцион двигатель ЗХ, RST, Р офункциона сообщени (ОС1/EG) пряжение рев инверавность д	(единица дания вре ривая іал: – 10 — Al3): 2 кана. В / 10 — 0 Е альных вхо NTC совмес 1 — Р7 ональных 22) – 10 В / 0	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выб тим только входов по выбанах (В в / 10 в / 10 в натактный ках: 1 каненное наппловая не	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м гору с двигател в выбору 0 — 0 В горо выбору выход: 2 гол (30А -	ть установ можения ифровой с ширения I/ мА / (АІЗ, АІ. ем LS-ОТІS канала (1/30C, 30A -	влена) игнал: пул 0 5 (плата ра (двигатели 3 - 1В, 2А - 30С) зка по ток гора • Пер Ошибка к	льт управ. сширения NTC и PTC <u>г</u> - 2B) су • Замь регрев дв коммуник	ления I/O): выбор доступны в игателя • кации • Об	двигателя SV2800iV5- землю Тепловая	NTC/PTC SV3750i\	
Входной сигнал Выходной сигнал	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход Контактный вход Контактный выход Открытый коллектор	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналого 3 канала - 10 — 10 15 много А13, А15: FX, RX, I 40 мног 2 канал - 10 — 1 40 много Вывод о 1 канал Перена - Перег неисправыходн	6000,0 сек інации за ая • S - к овый сигн (АІ1, АІ2, и овункцион двигатель ЗХ, RST, Р гофункциона сообщени (ОС1/ЕG) пряжение рев инвер авность д ой фазы	(единица дания вре ривая ал: - 10 — АІЗ): 2 кана. В / 10 — 0 Е альных вхо NTC совмес 1 — Р7 ональных оральный коня об ошиб	времени мени разі 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выб тим только входов по выбамах: 1 каненное наппловая не Потеря кодера	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м гору с двигател в выбору 0 — 0 В говыбору выход: 2 гол (30А - горяжение исправнос контроля с гору с Выход и	ть установ можения ифровой с ширения I/ мА / (AI3, AI мА - AI3) ем LS-OTIS канала (1/30C, 30A - AI4 морости • Перегрусть инверти от в инверти от в строя при за строя при на проя при на при на при на при на проя при на п	игнал: пул О 5 (плата ра (двигатели Зака по ток гора • Пер Ошибка к редохрани	льт управ. сширения NTC и PTC д - 2B) су • Замь эегрев дв соммуник этеля и т.д	ления (/0): выбор доступны в игателя • кации • Об	двигателя SV2800iV5- землю Тепловая	NTC/PTC SV3750i\	
Входной сигнал Выходной сигнал	Отсечка частоты ASR Точность поддержания мом Выбор времени разгона/торм Комбинации времени разгон Кривая разгона / торможен Задание частоты Аналоговый вход Контактный вход Контактный выход Открытый коллектор	лента южения а/торм.	50 Гц 3 % 0,00 — 6 4 комби Линейн Аналогс 3 канала - 10 — 10 15 много АІЗ, АІЗ: FX, RX, I 40 много Многоф Вывод о 1 канал Перена - Перег неиспра выходн IP00 (2, IP20 (2, Плата к	6000,0 сек пнации за ая • \$ - к рвый сигн (А11, А12, и В / 0 — 10 офункцион а (А01, А(0 В / 10 — гофункциона сообщени (ОС1/ЕG) пряжение рев инверев инверев инверев инверев инверев инверев инвереваность дой фазы 2 — 22 кВ- онтролле	(единица дания вре ривая ал: - 10 — АІЗ): 2 кана. В / 10 — 0 Е альных вхо NTC совмес 1 — Р7 ональных об ошиб е • Пониж отора • Те вигателя • Ошибка т: Пластик	времени мени рази 10 В / 4 — па (АІ4, АІ5 / 4 — 20 м дов по выб гим только входов по выходов гонтактный ках: 1 каненное нагиловая не Потеря контактеря и он потеря и он потер	может бы гона / торм 20 мА / Ці) платы рас А / 20 — 4 м гору с двигател выбору) — 0 В го выбору выход: 2 гал (30А - горяжение исправносонтроля с горя с горя уструс МоІд / горпус) Плата эн	ть установ можения ифровой с ширения // ла / (Al3, Al ем LS-OTIS) канала (1/30C, 30A - в Перегрусть инверткорости в из строя при // 30 — 374 кодера (от	игнал: пул О 5 (плата ра (двигатели А - 1В, 2А 30С) зка по ток гора • Пер Ошибка и редохрани кВт: Мета	льт управ. сширения NTC и РTC д - 2B) ку • Замь регрев дв коммуник ителя и т.д	ления I/O): выбор доступны в игателя • кации • Об д.	двигателя SV2800iV5- землю Тепловая	NTC/PTC	

ООО "ПневмоЭлектроСервис"

www.pes-rus.ru

197374, Россия, Санкт-Петербург, Торфяная дорога, 9 +7 (812) 326-31-00 E-mail: info@pes-rus.ru

Все для автоматизации производства:

- \cdot Частотные преобразователи \cdot Программируемые логические контроллеры \cdot Трансформаторы с литой изоляцией
- Элементы автоматики Операторские панели Низковольтное оборудование Сетевые фильтры и дроссели
- \cdot Светозвукосигнальная арматура \cdot Высокоточные датчики Optex FA \cdot Редукторы \cdot Электродвигатели \cdot Муфты
- \cdot Элементы управления \cdot Пневматическое оборудование \cdot Гидравлическое оборудование \cdot Сервоприводы

