AVX Surface Mount Ceramic Capacitor Products

/AVMX
Table of Contents
How to Order - AVX Part Number Explanation 2-3
COG (NPO) DielectricGeneral Specifications 4
Specifications and Test Methods -76-7
Capacitance Range
U Dielectric
RF/Microwave COG (NPO) Capaciators (RoHS) General Information and Capacitance Range 8-10
RF/Microwave COG (NPO) Capaciators (Sn/Pb) General Information and Capacitance Range 11-12
Designer Kits 13
X8R/X8L Dielectric
General Specifications 14-15
Specifications and Test Methods 16
X7R Dielectric
General Specifications 17
Specifications and Test Methods 18
Capacitance Range 19-20
X7S Dielectric
General Specifications 21
Specifications and Test Methods 22
Capacitance Range 23
X5R Dielectric
General Specifications 24
Specifications and Test Methods 25
Capacitance Range 26-27
Y5V Dielectric
General Specifications 28
Specifications and Test Methods 29
Capacitance Range 30
MLCC Gold Termination (AU Series)
General Specifications 31
Capacitance Range 32-37
MLCC Tin/Lead Termination (LD Series)
General Specifications 38
Capacitance Range 39-44
MLCC Low Profile
General Specifications / Capacitance Range 45
UltraThin Ceramic Capacitors General Specifications 46
Automotive MLCC
General Specifications 47-48
Capacitance Range 49-51
APS for COTS+ Applications
General Specifications 52
Capacitance Range 53-54
MLCC with FLEXITERM ${ }^{\text {® }}$
General Description 55
Specifications and Test Methods.
58-59
Capacitance Range
FLEXISAFE MLC Chips
General Specifications and Capacitance Range 60
Capacitor Array
Capacitor Array (IPC) 61-64
Automotive Capacitor Array (IPC) 65
Part and Pad Layout Dimensions. 66
Low Inductance Capacitors
Introduction 67-68
LICC (Low Inductance Chip Capacitors) 69-72
IDC (InterDigitated Capacitors) 73-76
LGA Low Inductance Capacitors 77-79
LICA (Low Inductance Decoupling Capacitor Arrays) 80-81
High Voltage MLC Chips
600 V to 5000 V Applications 82-86
Tin/Lead Termination "B" - 600 V to 5000 V Applications 87-88
FLEXITERM ${ }^{\oplus}-600 \mathrm{~V}$ to 3000 V Applications 89-90
600 V to 3000V Automotive Applications - AEC-Q200. 91-92
MIL-PRF-55681/Chips
CDR01 thru CDR06 93-94
CDR31 thru CDR35 95-98
Packaging of Chip Components 99
Embossed Carrier Configuration - 8 \& 12mm Tape 100
Paper Carrier Configuration - 8 \& 12mm Tape 101
Bulk Case Packaging 102
Basic Capacitor Formulas. 103
General Description 104-108
Surface Mounting Guide 109-113

Commercial Surface Mount Chips

EXAMPLE: 08055A101JAT2A

* B, C \& D tolerance for $\leq 10 \mathrm{pF}$ values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness.
See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips

EXAMPLE: 1808AA271KA11A

1808	A	A	271	K	A	T	1	A
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging/	Special
Style	$\mathrm{C}=600 \mathrm{~V} / 630 \mathrm{~V}$	Coefficient	Code	Tolerance	Rate	$1=\mathrm{Pd} / \mathrm{Ag}$	Marking	Code
0805	$\mathrm{A}=1000 \mathrm{~V}$	A $=\mathrm{COG}$	(2 significant digits	COG: $\quad J= \pm 5 \%$	A=Not	T = Plated Ni	$1=7$ "Reel	A = Standard
1206	$\mathrm{S}=1500 \mathrm{~V}$	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	+ no. of zeros)	$\mathrm{K}= \pm 10 \%$	Applicable	and Sn	3 = 13" Reel	
1210	$\mathrm{G}=2000 \mathrm{~V}$		Examples:	$\mathrm{M}= \pm 20 \%$		$\mathrm{B}=5 \% \mathrm{Min} \mathrm{Pb}$	9 = Bulk	
1808	$\mathrm{W}=2500 \mathrm{~V}$		$10 \mathrm{pF}=100$	X7R: $K= \pm 10 \%$		$\mathrm{Z}=$ FLEXITERM $^{\text {® }}$		
1812	$\mathrm{H}=3000 \mathrm{~V}$		$100 \mathrm{pF}=101$	$\mathrm{M}= \pm 20 \%$		X $=$ FLEXITERM ${ }^{\text {® }}$		
1825	$J=4000 \mathrm{~V}$		$1,000 \mathrm{pF}=102$	$\mathrm{Z}=+80 \%$,		with 5% min		
2220	$\mathrm{K}=5000 \mathrm{~V}$		$22,000 \mathrm{pF}=223$	-20\%		lead (X7R only)		
2225			$20,000 \mathrm{pF}=224$					
3640			$1 \mu \mathrm{~F}=105$					

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

Not RoHS Compliant	
lead-free	
$\underset{\substack{\text { LEAD-FREE COMPATIBLE } \\ \text { COMPONENT }}}{\text { Lent }}$	COMPLIANT
For RoHS compliant products, please select correct termination style.	

Capacitor Array

EXAMPLE: W2A43C103MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Low Inductance Capacitors (LICC)
EXAMPLE: 0612ZD105MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \Delta \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 2 for complete part number explanation)

RoHS COMPLIANT

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Parameter/Test		NP0 Specification Limits	Measuring Conditions	
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	$\begin{gathered} \text { Freq.: } 1.0 \mathrm{MHz} \pm 10 \% \text { for cap } \leq 1000 \mathrm{pF} \\ 1.0 \mathrm{kHz} \pm 10 \% \text { for cap }>1000 \mathrm{pF} \\ \text { Voltage: } 1.0 \mathrm{Vrms} \pm .2 \mathrm{~V} \\ \hline \end{gathered}$	
Q		$<30 \mathrm{pF}: \mathrm{Q} \geq 400+20 \times$ Cap Value $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $\nabla^{1 \mathrm{~mm} / \mathrm{sec}}$	
	Capacitance Variation	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater	Step 2: Room Temp	≤ 3 minutes
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0). Remove from test chamber and stabilize at room temperature for 24 hours before measuring.	
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater		
	(C=Nominal Cap)	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF}$, $<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied.	
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF}$, $<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

PREFERRED SIZES ARE SHADED

PREFERRED SIZES ARE SHADED

Ultra Low ESR, "U" Series, COG (NPO) Chip Capacitors

GENERAL INFORMATION

"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance

DIMENSIONS: inches (millimeters)

are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:
Size 0402-0.2 pF to 22 pF @ 1 MHz
Size 0603-1.0 pF to 100 pF @ 1 MHz
Size 0805-1.6 pF to 160 pF @ 1 MHz
Size 1210-2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
$0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(-55^{\circ}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Insulation Resistance (IR):
$10^{12} \Omega$ min. @ $25^{\circ} \mathrm{C}$ and rated WVDC
$10^{11} \Omega \mathrm{~min}$. @ $125^{\circ} \mathrm{C}$ and rated WVDC

Working Voltage (WVDC):

Size Working Voltage
0402 - 50, 25 WVDC
0603 - 200, 100, 50 WVDC
0805 - 200, 100 WVDC
1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250\% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402 - See Performance Curve, page 9
0603 - See Performance Curve, page 9
0805 - See Performance Curve, page 9
1210 - See Performance Curve, page 9
Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

RF/Microwave C0G (NPO) Capacitors (RoHS)
Ultra Low ESR, "U" Series, COG (NPO) Chip Capacitors

CAPACITANCE RANGE

	Available	Size			
Cap (pF)	Tolerance	0402	0603	0805	1210
0.2	B,C	50 V	N/A	N/A	N/A
0.3					
0.4	\downarrow				
0.5	B,C				
0.6	B,C,D				
0.7					
0.8	,				
0.9	B,C,D	\downarrow	V	V	∇

ULTRA LOW ESR, "U" SERIES

RF/Microwave C0G (NPO) Capacitors /AV/XZ Ultra Low ESR, "U" Series, COG (NPO) Chip Capacitors

/AVNK

RF/Microwave COG (NPO) Capacitors (Sn/Pb)

Ultra Low ESR, "U" Series, C0G (NPO) Chip Capacitors

GENERAL INFORMATION

"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance
are met on each value producing lot to lot uniformity Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Not RoHS Compliant

Capacitance Values and Tolerances:

Size 0402-0.2 pF to 22 pF @ 1 MHz Size 0603-1.0 pF to 100 pF @ 1 MHz Size 0805-1.6 pF to 160 pF @ 1 MHz Size 1210-2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
$0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(-55^{\circ}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Insulation Resistance (IR):
$10^{12} \Omega$ min. @ $25^{\circ} \mathrm{C}$ and rated WVDC
$10^{11} \Omega \mathrm{~min}$. @ $125^{\circ} \mathrm{C}$ and rated WVDC
Working Voltage (WVDC):

Size	\quad Working Voltage
$0402-50,25$ WVDC	
$0603-$	$200,100,50$ WVDC
$0805-$	200,100 WVDC
$1210-200,100$ WVDC	

Dielectric Working Voltage (DWV):
250% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402 - See Performance Curve, page 12
0603 - See Performance Curve, page 12
0805 - See Performance Curve, page 12
1210 - See Performance Curve, page 12
Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-5568

RF/Microwave C0G (NPO) Capacitors (Sn/Pb)
Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors
CAPACITANCE RANGE

	Available	Size			
Cap (pF)	Tolerance	LD02	LD03	LD05	LD10
0.2	B,C	50 V	N/A	N/A	N/A
0.3					
0.4	\dagger				
0.5	B,C				
0.6	B,C,D				
0.7	,				
0.8	\downarrow				
0.9	B,C,D	∇	\dagger	V	V

ULTRA LOW ESR, "U" SERIES

"U" SERIES KITS

0402			
Kit 5000 UZ			
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance
0.5 1.0 1.5 1.8	$\mathrm{B}(\pm 0.1 \mathrm{pF})$	4.7 5.6 6.8 8.2	$\mathrm{B}(\pm 0.1 \mathrm{pF})$
2.2		10.0	J ($\pm 5 \%$)
2.4 3.0		$\begin{aligned} & 12.0 \\ & 150 \end{aligned}$	
3.6			

0603

Kit 4000 UZ			
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance
1.0		6.8	
1.2		7.5	B $(\pm 0.1 \mathrm{pF})$
1.5		8.2	
1.8		10.0	
2.0		12.0	
2.4		B $(\pm 0.1 \mathrm{pF})$	15.0
2.7	18.0		
3.0		22.0	$\mathrm{~J}(\pm 5 \%)$
3.3		27.0	
3.9		33.0	
4.7		39.0	
5.6		47.0	
***25 each of 24 values			

1210

Kit 3500 UZ			
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance
2.2		36.0	
2.7		39.0	
4.7		47.0	
5.1	$\mathrm{~B}(\pm 0.1 \mathrm{pF})$	51.0	
6.8		56.0	
8.2		68.0	
9.1		82.0	
10.0		100.0	$\mathrm{~J}(\pm 5 \%)$
13.0		120.0	
15.0		130.0	
18.0	$\mathrm{~J}(\pm 5 \%)$	240.0	
20.0		300.0	
24.0		390.0	
27.0		470.0	
30.0		680.0	

***25 each of 30 values

AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to $150^{\circ} \mathrm{C}$. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of $\pm 15 \%$ between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$. The X8L material has capacitance variation of $\pm 15 \%$ between $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and $+15 /-40 \%$ from $+125^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.
They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.
Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM ${ }^{\circledR}$ and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM ${ }^{\circledR}$ termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.
PART NUMBER (see page 2 for complete part number explanation)

0805	5	F	104	K	4	T	2	A
$\begin{aligned} & \text { Size } \\ & 0603 \\ & 0805 \\ & 1206 \end{aligned}$	$\begin{aligned} & \text { Voltage } \\ & 16 \mathrm{~V}=\mathrm{Y} \\ & 25 \mathrm{~V}=3 \\ & 5 \mathrm{~V}=5 \\ & 100 \mathrm{~V}=1 \end{aligned}$	$\begin{aligned} & \text { Dielectric } \\ & \times 8 R== \\ & \times 8 L=L \end{aligned}$	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. $10 \mu \mathrm{~F}=106$	$\begin{gathered} \text { Capacitance } \\ \text { Tolerance } \\ J= \pm 5 \% \\ K= \pm 10 \% \\ M= \pm 20 \% \end{gathered}$	$\begin{aligned} & \text { Failure } \\ & \text { Rate } \\ & 4= \text { Automotive } \\ & \mathrm{A}= \text { Not } \\ & \text { Applicable } \end{aligned}$	Terminations T = Plated Ni and Sn $Z=$ FLEXITERM ${ }^{\circledR}$ $\mathrm{U}=$ Conductive Epoxy for Hybrid apps	Packaging $2=7$ " Reel $4=13^{\prime \prime}$ Reel	Special Code A = Std.

APPLICATIONS FOR X8R AND X8L CAPACITORS

- All market sectors with a $150^{\circ} \mathrm{C}$ requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
- Battery control
- Inverter / converter circuits
- Motor control applications
- Water pump
- Hybrid commercial applications

- Emergency circuits
- Sensors
- Temperature regulation

ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM ${ }^{\circledR}$ available
- Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

X8R/X8L Dielectric

/AVNK

Parameter/Test		X8R/X8L Specification Limits	Measuring Conditions	
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$ Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Dissipation Factor		$\leq 2.5 \%$ for $\geq 50 \mathrm{~V}$ DC rating $\leq 3.5 \%$ for 25 V DC and 16 V DC rating		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300\% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150\% of rated voltage for 500V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\leq \pm 12 \%$		
	Dissipation			
	Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with 1.5 rated voltage ($\leq 10 \mathrm{~V}$) in test chamber set at $150^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$)	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This capacitance change is non-linear.
Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency.
X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

RoHS
COMPLIANT

PART NUMBER (see page 2 for complete part number explanation)

0805	5	C	103	M	A	T	2	A
1								
$\begin{gathered} \text { Size } \\ \left(L^{\prime \prime} \times \text { W") }^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Voltage } \\ & 4 \mathrm{~V}=4 \\ & 6.3 \mathrm{~V}=6 \\ & 10 \mathrm{~V}=Z \\ & 16 \mathrm{~V}=Y \\ & 25 \mathrm{~V}=3 \\ & 50 \mathrm{~V}=5 \\ & 100 \mathrm{~V}=1 \\ & 200 \mathrm{~V}=2 \\ & 500 \mathrm{~V}=7 \end{aligned}$	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $\begin{aligned} & J= \pm 5 \%^{*} \\ & K= \pm 10 \% \end{aligned}$ $M= \pm 20 \%$ * $\leq 1 \mu$ F only, contact factory for additional values	Failure Rate A = Not Applicable	Terminations $\mathrm{T}=$ Plated Ni and Sn 7 = Gold Plated* Z $=$ FLEXITERM ${ }^{\text {®** }}$ *Optional termination **See FLEXITERM ${ }^{\circledR}$ X7R section	Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Contact Factory For Multiples	$\begin{gathered} \text { Special } \\ \text { Code } \\ \text { A }=\text { Std. Product } \end{gathered}$

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

X7R Dielectric
Typical Temperature Coefficient

Variation of Impedance with Cap Value
Impedance vs. Frequency
$1,000 \mathrm{pF}$ vs. $10,000 \mathrm{pF}$ - X7R 0805

Δ Capacitance vs. Frequency

Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7R

Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R

Parameter/Test		X7R Specification Limits	Measuring Conditions	
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$ Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Dissipation Factor		$\leq 2.5 \%$ for $\geq 50 \mathrm{~V}$ DC rating $\leq 3.0 \%$ for 25V DC rating $\leq 3.5 \%$ for 25 V and 16 V DC rating $\leq 5.0 \%$ for $\leq 10 \mathrm{~V}$ DC rating		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300% of rated voltage for $1-5$ seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects		
	Capacitance Variation	$\leq \pm 12 \%$	Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with 1.5 rated voltage ($\leq 10 \mathrm{~V}$) in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$)	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

X7R Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Thickness } \end{array}$	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values

X7R Dielectric

Capacitance Range
PREFERRED SIZES ARE SHADED

NOTE: Contact factory for non-specified capacitance values

GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitance s within $\pm 22 \%$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This capacitance change is non-linear.

Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.
X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (see page 2 for complete part number explanation)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parameter/Test		X7S Specification Limits	Measuring Conditions	
Operating Tem	rature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$For Cap $>10 \mu \mathrm{~F}, 0.5 \mathrm{Vrms} @ 120 \mathrm{~Hz}$	
Dissipation Factor		$\begin{array}{r} \leq 2.5 \% \text { for } \geq 50 \mathrm{~V} \text { DC rating } \\ \leq 3.0 \% \text { for } 25 \mathrm{~V} \text { DC rating } \\ \leq 3.5 \% \text { for } 16 \mathrm{~V} \text { DC rating } \\ \leq 5.0 \% \text { for } \leq 10 \mathrm{~V} \text { DC rating } \end{array}$		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\leq \pm 12 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with 1.5 rated voltage ($\leq 10 \mathrm{~V}$) in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0)	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours (+48, -0) with rated voltage applied.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

PREFERRED SIZES ARE SHADED

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.90	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.075)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

GENERAL DESCRIPTION

- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to $100 \mu \mathrm{~F}$)

PART NUMBER (see page 2 for complete part number explanation)

**EIA 01005

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parameter/Test		X5R Specification Limits	Measuring Conditions	
Operating Tem	erature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	$\begin{gathered} \text { Freq.: } 1.0 \mathrm{kHz} \pm 10 \% \\ \text { Voltage: } 1.0 \mathrm{Vrms} \pm .2 \mathrm{~V} \\ \text { For Cap }>10 \mu \mathrm{~F}, 0.5 \mathrm{Vrms} @ 120 \mathrm{~Hz} \end{gathered}$	
Dissipation Factor		$\leq 2.5 \%$ for $\geq 50 \mathrm{~V}$ DC rating $\leq 3.0 \%$ for 25 V DC rating $\leq 12.5 \%$ Max. for 16V DC rating and lower Contact Factory for DF by PN		
Insulation Resistance		$10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300\% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\leq \pm 12 \%$		
	Dissipation			
	Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+85^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with 1.5 X rated voltage in test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$). Note: Contact factory for *optional specification part numbers that are tested at < 1.5X rated voltage. Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size		0101*		0201					0402						0603							0805						
Soldering		Reflow Only		Reflow Only					Reflow/Wave						Reflow/Wave							Reflow/Wave						
Packaging		Paper/Embossed		All Paper					All Paper						All Paper							Paper/Embossed						
(L) Length min	$\underset{(\mathrm{in} .)}{\mathrm{mm}}$	$\begin{gathered} 0.40 \pm 0.02 \\ (0.016 \pm 0.0008) \end{gathered}$		$\begin{gathered} 0.60 \pm 0.03 \\ (0.024 \pm 0.001) \end{gathered}$					$\begin{gathered} 1.00 \pm 0.10 \\ (0.040 \pm 0.004) \end{gathered}$						$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \end{gathered}$							$\begin{gathered} 2.01 \pm 0.20 \\ (0.079 \pm 0.008) \end{gathered}$						
M) Width min min	$\underset{(\mathrm{in} .)}{\mathrm{mm}}$	$\begin{gathered} 0.20 \pm 0.02 \\ (0.008 \pm 0.0008 \end{gathered}$		$\begin{gathered} 0.30 \pm 0.03 \\ (0.011 \pm 0.001) \end{gathered}$					$\begin{gathered} 0.50 \pm 0.10 \\ (0.020 \pm 0.004) \end{gathered}$						$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \end{gathered}$							$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \end{gathered}$						
	(in.)	$\begin{gathered} 0.10 \pm 0.04 \\ (0.004 \pm 0.016) \\ \hline \end{gathered}$		$\begin{gathered} 0.15 \pm 0.05 \\ (0.006 \pm 0.002) \end{gathered}$					$\begin{gathered} 0.25 \pm 0.15 \\ (0.010 \pm 0.006 \end{gathered}$						$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \end{gathered}$							$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$						
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		B					A																				
150	151		B					A																				
220	221		B					A						c														
330	331		B					A						C														
470	471		B					A						C														
680	681		B					A						C														
1000	102		B				A	A						C														
1500	152	B	B				A	A						c														
2200	222	B	B			A	A	A						C														
3300	332	B	B			A	A	A						C														
4700	472	B	B			A	A	A					c								G							
6800	682	B	B			A	A	A					C								G							
$\bigcirc 001$	103	B	B			A	A	A					c						G	G	G							
0.015	153	B											c						G	G	G							
0.022	223	B			A							C	c						G	G	G							N
0.033	333	B										C							G	G	G							N
0.047	473	B			A							C	c						G	G	G							N
0.068	683	B										C							G		G							N
0.1	104	B			A	A					C	C	c	C					G	G	G					N	N	N
0.15	154																		G							N	N	
0.22	224	B		A	A	A				c	c	C						G	G							N	N	N
0.33	334																	G	G							N		
0.47	474			A	A				c	C	c	c						G	J							N	P	P
0.68	684																	G								N		
1.0	105			A	A				C	C	C	C			G	G	G	G	J	G	G				N	N	P	P
1.5	155																											
2.2	225			A	A				C	C	C				G	G	J	J	J					N	N	N	P	P
3.3	335														J	J	J	J					N	N				
4.7	475								E	E					J	J	J	G				N	N	N	N	N	P	P
10	106								E	E					K	J	J					N	N	N	N	P		
22	226														K	K						N	N	P	P			
47	476																					P	P					
100	107																					P						
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size						0201												0603							0805			

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} \hline 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} \hline 2.79 \\ (0.110) \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values
*EIA 01005

Capacitance Range
PREFERRED SIZES ARE SHADED

Case Size	1206								1210							1812						
Soldering	Reflow/Wave								Reflow Only							Reflow Only						
Packaging	Paper/Embossed								Paper/Embossed							All Embossed						
(L) Length mm $(\mathrm{in}$)	$\begin{array}{r} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{array}$								$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$							$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012 \end{gathered}$						
W) Width mm (in). 	$\begin{gathered} 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \end{gathered}$								$\begin{gathered} 2.50 \pm 0.20 \\ (0.098 \pm 0.008) \end{gathered}$							$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008 \\ \hline \end{gathered}$						
(t) Terminal $\begin{gathered}\text { mm } \\ \text { (in.) }\end{gathered}$	$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$							$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$						
Voltage:	4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100 101																						
$150 \quad 151$																						
$220 \quad 221$																						
330331																						
470471																						
$680 \quad 681$																						
1000102																						
$1500 \quad 152$																						
$2200 \quad 222$																						
$3300 \quad 332$																						
$4700 \quad 472$																						
6800682																						
 Cap ($\mu \mathrm{F}$) 0.01 103 0.05																						
$0.015 \quad 153$																						
$0.022 \quad 223$																						
$0.033 \quad 333$																						
0.047473																						
$0.068 \quad 683$																						
0.1104																						
$0.15 \quad 154$																						
$0.22 \quad 224$																						
$0.33 \quad 334$																						
0.47474					Q	Q								X	X							
0.68 684																						
$1.0 \quad 105$					Q	Q	Q	Q					X	X	X							
$1.5 \quad 155$																						
2.2225			Q	Q	Q	Q	Q	Q					X	Z	Z							
3.3335		Q	Q																			
4.7475	Q	Q	Q	Q	Q	Q	Q	X			Q	Q	z	z	z							
$10 \quad 106$	Q	Q	Q	Q	Q	Q	X			X	X	Z	Z	Z	Z					Z		
$22 \quad 226$	Q	Q	Q	Q	Q				z	Z	Z	Z	Z									
$47 \quad 476$	Q	Q	Q						Z	Z	Z	Z					2					
$100 \quad 107$	Q	Q							Z	Z	Z	Z										
Voltage	4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size												1210							1812			

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.22 \\ \hline 0.009) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ \hline(0.110) \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values
*EIA 01005

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of $+22 \%-82 \%$ capacitance change over the operating temperature range of $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
These characteristics make Y5V ideal for decoupling applications within limited temperature range.

PART NUMBER (see page 2 for complete part number explanation)

Specifications and Test Methods

Parameter/Test		Y5V Specification Limits	Measuring	onditions
Operating Temperature Range		$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Temperature	cle Chamber
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$ Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$ For Cap > $10 \mu \mathrm{~F}, 0.5 \mathrm{~V}$ rms @ 120 Hz	
Dissipation Factor		$\begin{array}{r} \leq 5.0 \% \text { for } \geq 50 \mathrm{~V} \text { DC rating } \\ \leq 7.0 \% \text { for } 25 \mathrm{~V} \text { DC rating } \\ \leq 9.0 \% \text { for } 16 \mathrm{~V} \text { DC rating } \\ \leq 12.5 \% \text { for } \leq 10 \mathrm{~V} \text { DC rating } \\ \hline \end{array}$		
Insulation Resistance		$10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300\% of rated voltage for $1-5$ seconds, w/charge and discharge current limited to 50 mA (max)	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\leq \pm 30 \%$		
	Dissipation			
	Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.1$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 20 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-30^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 20 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+85^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0)	
	Capacitance Variation	$\leq \pm 30 \%$		
	Dissipation Factor	\leq Initial Value $\times 1.5$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.1$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied.	
	Capacitance Variation	$\leq \pm 30 \%$		
	Dissipation Factor	\leq Initial Value $\times 1.5$ (See above)		
	Insulation Resistance	\geq Initial Value $\times 0.1$ (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range
PREFERRED SIZES ARE SHADED

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} \hline \underline{0.71} \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER EMBOSSED												

MLCC Gold Termination - AU Series

General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a " 7 " or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y	C	104	K	A	7	2	A
Size AU01-0201 AU02-0402 AU03-0603 AU05-0805 AU06-1206 AU10-1210 AU12-1812 AU13-1825 AU14-2225 AU16-0306 AU17-0508 AU18-0612	Voltage $\begin{array}{r} 6.3 \mathrm{~V}=6 \\ 10 \mathrm{~V}=\mathrm{Z} \\ 16 \mathrm{~V}=\mathrm{Y} \\ 25 \mathrm{~V}=3 \\ 35 \mathrm{~V}=\mathrm{D} \\ 50 \mathrm{~V}=5 \\ 100 \mathrm{~V}=1 \\ 200 \mathrm{~V}=2 \\ 500 \mathrm{~V}=7 \end{array}$	$\begin{gathered} \text { Dielectric } \\ \text { COG (NPO) }=A \\ \times 7 R=C \\ \text { X } 5 R=D \end{gathered}$	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $\begin{aligned} & \mathrm{B}= \pm .10 \mathrm{pF}(<10 \mathrm{pF}) \\ & \mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF}) \\ & \mathrm{D}= \pm .50 \mathrm{pF}(<10 \mathrm{pF}) \\ & \mathrm{F}= \pm 1 \%(\geq 10 \mathrm{pF}) \\ & \mathrm{G}= \pm 2 \%(\geq 10 \mathrm{pF}) \\ & \mathrm{J}= \pm 5 \% \\ & \mathrm{~K}= \pm 10 \% \\ & \mathrm{M}= \pm 20 \% \end{aligned}$	Failure Rate A = Not Applicable	Terminations $\begin{gathered} \mathrm{G}^{\star}=1.9 \mu^{\prime \prime} \text { to } \\ 7.87 \mu^{\prime \prime} \\ 7=\begin{array}{l} 100 \mu^{\prime \prime} \\ \text { minimum } \end{array} \end{gathered}$	Packaging $2=7{ }^{\prime \prime}$ Reel $4=13^{\prime \prime}$ Reel 9 = Bulk $U=4 \mathrm{~mm} T R$ (01005) Contact Factory For Multiples*	Special Code A = Std Product

MLCC Gold Termination - AU Series
 Capacitance Range (NPO Dielectric)

PREFERRED SIZES ARE SHADED

* Contact factory

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

MLCC Gold Termination - AU Series
 Capacitance Range (NPO Dielectric)

PREFERRED SIZES ARE SHADED

[^0]| Letter | A | C | E | G | J | K | M | N | P | Q | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. Thickness | $\begin{gathered} 0.33 \\ (0.013) \end{gathered}$ | $\begin{gathered} 0.56 \\ (0.022) \end{gathered}$ | $\begin{gathered} 0.71 \\ (0.028) \end{gathered}$ | $\begin{gathered} 0.90 \\ (0.035) \end{gathered}$ | $\begin{gathered} 0.94 \\ (0.037) \end{gathered}$ | $\begin{gathered} 1.02 \\ (0.040) \end{gathered}$ | $\begin{gathered} 1.27 \\ (0.050) \end{gathered}$ | $\begin{gathered} 1.40 \\ (0.055) \end{gathered}$ | $\begin{gathered} 1.52 \\ (0.060) \end{gathered}$ | $\begin{gathered} 1.78 \\ (0.070) \end{gathered}$ | $\begin{gathered} 2.29 \\ (0.090) \end{gathered}$ | $\begin{gathered} 2.54 \\ (0.100) \end{gathered}$ | $\begin{gathered} 2.79 \\ (0.110) \end{gathered}$ |
| | PAPER | | | | | EMBOSSED | | | | | | | |

MLCC Gold Termination - AU Series
 Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

* Contact factory

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER					EMBOSSED							

= Under Development

MLCC Gold Termination - AU Series

Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED

* Contact factory

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)

MLCC Gold Termination - AU Series
 Capacitance Range (X5R Dielectric)

PREFERRED SIZES ARE SHADED

* Contact factory

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} \hline 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} \hline 2.79 \\ (0.110) \end{gathered}$
	PAPER					EMBOSSED							

= Under Development
$=$ *Optional Specifications - Contact factory
NOTE: Contact factory for non-specified capacitance values

MLCC Gold Termination - AU Series

0612/0508/0306/Gold LICC (Low Inductance Chip Capacitors)

SIZE	0306						0508					0612				
Packaging	Embossed						Embossed					Embossed				
Length $\left.\begin{array}{l}\mathrm{mm} \\ \text { (in.) }\end{array}\right)$	$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \\ \hline \end{gathered}$						$\begin{gathered} 1.27 \pm 0.25 \\ (0.050 \pm 0.010) \\ \hline \end{gathered}$					$\begin{gathered} 1.60 \pm 0.25 \\ (0.063 \pm 0.010) \\ \hline \end{gathered}$				
Width mm (in.)	$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \\ \hline \end{gathered}$						$\begin{gathered} 2.00 \pm 0.25 \\ (0.080 \pm 0.010) \\ \hline \end{gathered}$					$\begin{gathered} 3.20 \pm 0.25 \\ (0.126 \pm 0.010) \\ \hline \end{gathered}$				
WVDC	4	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
CAP 0.001																
($\mu \mathrm{F}$) 0.0022																
0.0047																
0.010																
0.015																
0.022																
0.047																
0.068																
0.10				77												
0.15																
0.22																
0.47																
0.68																
1.0																
1.5																
2.2																
3.3												77				
4.7																
10																

Solid $=$ X7R
$\square / \lambda=x 5 R$
$\square \square=\mathbf{X 7 S}$

mm (in.)	
0306	
Code	Thickness
A	$0.61(0.024)$

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS mm (in)

	\mathbf{L}	\mathbf{W}	\mathbf{t}
$\mathbf{0 6 1 2}$	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
	(0.063 ± 0.010)	(0.126 ± 0.010)	$(0.005 \mathrm{~min})$.
$\mathbf{0 5 0 8}$	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
	(0.050 ± 0.010)	(0.080 ± 0.010)	$(0.005 \mathrm{~min})$.
$\mathbf{0 3 0 6}$	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
	(0.032 ± 0.006)	(0.063 ± 0.006)	$(0.005 \mathrm{~min})$.

T - See Range Chart for Thickness and Codes
PAD LAYOUT DIMENSIONS mm (in)

	A	B	C
0612	$0.76(0.030)$	$3.05(0.120)$	$.635(0.025)$
0508	$0.51(0.020)$	$2.03(0.080)$	$0.51(0.020)$
0306	$0.31(0.012)$	$1.52(0.060)$	$0.51(0.020)$

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a " B " in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special " B " termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (see page 2 for complete part number explanation)

LD05	5	A	101	J	A	B	2	A
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
LDO2-0402	$6.3 \mathrm{~V}=6$	$\mathrm{COG}(\mathrm{NPO})=\mathrm{A}$	Code (In pF)	Tolerance	Rate	$\mathrm{B}=5 \% \mathrm{~min}$ lead	$2=7$ "Reel	Code
LD03-0603	$10 \mathrm{~V}=\mathrm{Z}$	$\times 7 \mathrm{R}=\mathrm{C}$	2 Sig. Digits +	$\mathrm{B}= \pm .10 \mathrm{pF}$ (<10pF)	$\mathrm{A}=\mathrm{Not}$	X = FLEXITERM ${ }^{\text {® }}$	$4=13^{\prime \prime}$ Reel	$\mathrm{A}=$ Std.
LD04-0504*	$16 \mathrm{~V}=\mathrm{Y}$	$\mathrm{X} 5 \mathrm{R}=\mathrm{D}$ $\mathrm{X} 8 \mathrm{R}=\mathrm{F}$	Number of	$\mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF})$	Applicable	with 5\% min	$7 \text { = Bulk Cass. }$	Product
LD05-0805	$25 \mathrm{~V}=3$	X8R $=\mathrm{F}$	Zeros	$\mathrm{D}= \pm .50 \mathrm{pF}(<10 \mathrm{pF})$		lead**	$9=\text { Bulk }$	
LD06-1206	$35 \mathrm{~V}=\mathrm{D}$			$\mathrm{F}= \pm 1 \%(\geq 10 \mathrm{pF})$				
LD10-1210	$50 \mathrm{~V}=5$			$\mathrm{G}= \pm 2 \%(\geq 10 \mathrm{pF})$			Contact Factory	
LD12-1812	$100 \mathrm{~V}=1$			$J= \pm 5 \%$		** \times R only	For Multiples	
$\begin{aligned} & \text { LD13-1825 } \\ & \text { LD14-2225 } \end{aligned}$	$\begin{aligned} & 200 V=2 \\ & 500 v=7 \end{aligned}$			$\begin{aligned} & K= \pm 10 \% \\ & M= \pm 20 \% \end{aligned}$			Multiples	
LD20-2220	$500 \mathrm{~V}=7$			-				

*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.

See FLEXITERM ${ }^{\circledR}$ section for CV options

NPO

Refer to page 4 for Electrical Graphs

MLCC Tin/Lead Termination "B"

Capacitance Range (NPO Dielectric)

PREFERRED SIZES ARE SHADED

PREFERRED SIZES ARE SHADED

MLCC Tin/Lead Termination "B"

Capacitance Range (X8R Dielectric)

MLCC Tin/Lead Termination "B"
Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)

= Under Development

MLCC Tin/Lead Termination "B"

Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

MLCC Tin/Lead Termination "B"

PREFERRED SIZES ARE SHADED

= Under Development
= *Optional Specifications - Contact factory
NOTE: Contact factory for non-specified capacitance values

GENERAL DESCRIPTION

AVX introduces the LT series comprising a range of low profile products in our X5R and X7R dielectric. X 5 R is a Class II dielectric with temperature varation of capacitance within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Offerings include 0201, 0402, 0603, 0805 1206, and 1210 packages in compact, low profile designs. The LT series is ideal for decoupling and filtering applications where height clearance is limited. AVX is also expanding the low profile products in our X7R dielectric. X7R is a Class II dielectric with temperature variation of capacitance within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Please contact the factory for availability of any additional values not listed.
PART NUMBER (see page 2 for complete part number explanation)

NOTE: Contact factory for availability of tolerance options for specific part numbers.

	SIZE																		LTO				
		WDC	4	6.3	4	6.3	10	16	4	6.3	16	25	6.3	10	16	25	6.3	10	16	25	50	16	25
Cap	104	0.10	z	z		Q		S															
(μ F)		0.22										X											
		0.47										X								X			
	105	1.0	Q		c		S				S	X			X	X		X	X	X	W		
		1.5																					
		2.2			S	c				S	X			X	x			X	X	x	x		
		4.7							S	X			X	S	X			W	W	X	X	W	
	106	10							XW				X	X			W	W	W	X		W	
		22																					
		47																					
		WDC	4	6.3	4	6.3	10	16	4	6.3	16	25	6.3	10	16	25	6.3	10	16	25	50	16	25
	SIZE		LT01		LT02				LT03				LT05				LT06					LT10	

= X7R

Letter	J	Z	Q	C	S	X	W
Max.	0.15	0.22	0.25	0.36	0.56	0.95	1.02
Thickness	(0.006)	(0.009)	(0.010)	(0.014)	(0.022)	(0.038)	(0.040)
PAPER							

HOW TO ORDER

The Ultrathin (UT) series of ceramic capacitors is a new product offering from AVX. The UT series was designed to meet the stringent thickness requirements of our customers. AVX developed a new termination process (FCT - Fine Copper Termination) that provides unbeatable flatness and repeatability. The series includes products $<0.35 \mathrm{~mm}$ in height and is targeted for applications such as Smart cards, Memory modules, High Density SIM cards, Mobile phones, MP3 players, and embedded solutions.

PART DIMENSIONS
inches (mm)

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B L}$
1.00 ± 0.10	0.50 ± 0.10	0.25 ± 0.05	0.25 ± 0.10
(0.039 ± 0.004)	(0.020 ± 0.004)	(0.010 ± 0.002)	(0.010 ± 0.004)

RECOMMENDED SOLDER

 PAD DIMENSIONS mm (inches)

PERFORMANCE CHARACTERISTICS

Capacitance Value	$0.01 \mu \mathrm{~F}$
Capacitance Tolerance	$\pm 20 \%$
Dissipation Factor Range	3.0%
Operating Temperature	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}$
Temperature Coefficient	$\pm 15 \%$
Rated Voltage	25 V
Insulation Resistance at $\mathbf{2 5}^{\circ} \mathbf{C}$ and Rated Voltage	$100,000 \mathrm{Mohms}$
Test Frequency	1 Vrms @ 1 KHz

Automotive MLCC Automotive

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.
As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established $\mathrm{Pd} / \mathrm{Ag}$ electrode system to a Base Metal Electrode system (BME).
AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a $\mathrm{Ni} / \mathrm{Sn}$ plated overcoat.
- X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting.
- X7R dielectric components BME electrode and soft terminations with a $\mathrm{Ni} /$ Sn plated overcoat.
- NPO dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.

HOW TO ORDER

0805	5	A
Size	Voltage	Dielectric
0402	$10 \mathrm{~V}=\mathrm{Z}$	NPO = A
0603	$16 \mathrm{~V}=\mathrm{Y}$	$X 7 \mathrm{R}=\mathrm{C}$
0805	$25 \mathrm{~V}=3$	$X 8 R=F$
1206	$50 \mathrm{~V}=5$	
1210	$100 \mathrm{~V}=1$	
1812	$200 \mathrm{~V}=2$	
	$500 \mathrm{~V}=7$	

$$
\begin{aligned}
& 104 \\
& \text { Capacitance } \\
& \text { Code (In pF) } \\
& 2 \text { Significant } \\
& \text { Digits + Number } \\
& \text { of Zeros } \\
& \text { e.g. } 10 \mu \mathrm{~F}=106 \\
& \text { *NPO only }
\end{aligned}
$$

Packaging
$2=7$ " Reel 4 = 13" Reel

Special Code A = Std. Product
,
RoHS COMPLIANT

NOTE: Contact factory for non-specified capacitance values. 0402 case size available in T termination only.
COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. Used to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of $0.029 "(0.74 \mathrm{~mm})$ on all X7R product.
Dicing	Side \& End Margins $=0.003^{\prime \prime}$ min	Side \& End Margins $=0.004 "$ min Cover Layers $=0.003 " \mathrm{~min}$
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan - stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NPO followed by lot by lot reliability testing.

FLEXITERM® FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

b) Temperature Cycle testing

FLEXITERM ${ }^{\circledR}$ has the ability to withstand at least 1000 cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$

Automotive MLCC - NPO
 Capacitance Range

		0603				0805			1206					1210				1812	
		25V	50 V		100V	25 V	50V	100V	25 V	50V	100 V	200 V	500V	25V	50V	100V	200 V	50V	100 V
100	10pF	G	G	G	G	J	J	J	J	J	J	J	J						
120	12	G	G	G	G	J	J	J	J	J	J	J	J						
150	15	G	G	G	G	J	J	J	J	J	J	J	J						
180	18	G	G	G	G	J	J	J	J	J	J	J							
220	22	G	G	G	G	J	J	J	J	J	J	J							
270	27	G	G	G	G	J	J	J	J	J	J	J							
330	33	G	G	G	G	J	J	J	J	J	J	J							
390	39	G	G	G	G	J	J	J	J	J	J	J							
470	47	G	G	G	G	J	J	J	J	J	J	J							
510	51	G	G	G	G	J	J	J	J	J	J	J							
560	56	G	G	G	G	J	J	J	J	J	J	J							
680	68	G	G	G	G	J	J	J	J	J	J	J							
820	82	G	G	G	G	J	J	J	J	J	J	J							
101	100	G	G	G	G	J	J	J	J	J	J	J							
121	120	G	G	G	G	J	J	J	J	J	J	J							
151	150	G	G	G	G	J	J	J	J	J	J	J							
181	180	G	G	G	G	J	J	J	J	J	J	J							
221	220	G	G	G	G	J	J	J	J	J	J	J							
271	270	G	G	G	G	J	J	J	J	J	J	J							
331	330	G	G	G	G	J	J	J	J	J	J	J							
391	390	G	G	G		J	J	J	J	J	J	J							
471	470	G	G	G		J	J	J	J	J	J	J							
561	560					J	J	J	J	J	J	J							
681	680					J	J	J	J	J	J	J							
821	820					J	J	J	J	J	J	J							
102	1000					J	J	J	J	J	J	J		J	J	J	J		
122	1200								J	J	J	J		J	J	M	M		
152	1500								J	M	M	M		J	J	M	M		
182	1800								J	M	M	M		J	J	M	M		
222	2200								J	M	M	M		J	J	M	M		
272	2700								J	M				J	J	M			
332	3300								J	M				J	J	P		K	K
392	3900													J	J	P		K	K
472	4700													J	J	P		K	K
103 10nF																			
		25 V	50 V	V	100V	25 V	50 V	100 V	25 V	50 V	100 V	200 V	500V	25 V	50 V	100V	200V	50 V	100 V
		0603				0805			1206					1210				1812	
		A	C			E		J		K	M	N	P		Q	X			Z
Max.Thickness			$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$			$\begin{gathered} \hline 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} \hline G \\ \hline 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$		$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	1.40	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$		$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} \hline 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.79 \\ (0.110) \\ \hline \end{gathered}$	
		(0.013)									(0.055)								
		PAPER							EMBOSSED										

= Under Development

Automotive MLCC - X7R
Capacitance Range

		0402			0603					0805					1206							1210				1812		2220	
		16 V	25 V	50 V	16 V	25 V	50 V	100V	200 V	16 V	25 V	50 V	100 V	200 V	16 V		25 V	50 V	100 V	200 V	500 V	16 V	25 V	50V	100 V	50V	100 V	25 V	50 V
221	Cap . 22																												
271	(nF) . 27																												
331	. 33																												
391	. 39																												
471	. 47																												
561	. 56																												
681	. 68																												
821	. 82																												
102	1				G	G	G	G	G	J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
182	1.8				G	G	G	G		J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
222	2.2				G	G	G	G		J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
332	3.3				G	G	G	G		J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
472	4.7				G	G	G	G		J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
103	10				G	G	G	G		J	J	J	J	J	J		J	J	J	J	J	K	K	K	K	K	K		
123	12				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
153	15				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
183	18				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
223	22				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
273	27				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
333	33				G	G	G			J	J	J	M		J		J	J	J	J		K	K	K	K	K	K		
473	47				G	G	G			J	J	J	M		J		J	J	M	J		K	K	K	K	K	K		
563	56				G	G	G			J	J	J	M		J		J	J	M	J		K	K	K	M	K	K		
683	68				G	G	G			J	J	J	M		J		J	J	M	J		K	K	K	M	K	K		
823	82				G	G	G			J	J	J	M		J		J	J	M	J		K	K	K	M	K	K		
104	100				G	G	G			J	J	M	M		J		J	J	M	J		K	K	K	M	K	K		
124	120									J	J	M			J		J	M	M			K	K	K	P	K	K		
154	150									M	N	M			J		J	M	M			K	K	K	P	K	K		
224	220									M	N	M			J		M	M	Q			M	M	M	P	M	M		
334	330									N	N	M			J		M	P	Q			P	P	P	Q	X	X		
474	470									N	N	M			M		M	P	Q			P	P	P	Q	X	X		
684	680									N	N				M		Q	Q	Q			P	P	Q	X	X	X		
105	Cap 1									N	N				M		Q	Q	Q			P	Q	Q	X	X	X		
155	(μ F) 1.5														Q		Q					P	Q	Z	Z	X	X		
225	2.2														Q		Q					X	Z	Z	z	z	Z		
335	3.3																					X	Z	Z		Z			
475	4.7																					X	Z	Z		Z			
106	10																												Z
226	22																											Z	
		16 V	25 V	50 V	16 V	25 V	50 V	100V	200 V	16 V	25 V	50 V	100 V	200 V	16 V		25 V	50 V	100 V	200 V	500 V	16 V	25 V	50 V	100 V	50 V	100 V	25 V	50 V
			0402				0603					0805							06					10			12	22	20

= Under Development

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} \quad-\quad .71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER					EMBOSSED							

Automotive MLCC - X8R
 Capacitance Range

GENERAL DESCRIPTION

As part of our continuing support to high reliability customers, AVX has launched an Automotive Plus Series of parts (APS) qualified and manufactured in accordance with automotive AEC-Q200 standard. Each production batch is quality tested to an enhanced requirement and shipped with a certificate of conformance. On a quarterly basis a reliability package is issued to all APS customers.
A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat.
- X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat (FLEXITERM ${ }^{\circledR}$).
- X7R for Hybrid applications.
- NPO dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.
We are also able to support customers who require an AEC-Q200 grade component finished with Tin/Lead.

HOW TO ORDER

AP03	5	A	104	K	Q	T	2	A
$\begin{gathered} \text { Size } \\ \text { AP03=0603 } \end{gathered}$	Voltage $16 \mathrm{~V}=\mathrm{Y}$	Dielectric NPO $=\mathrm{A}$	Capacitance Code (In pF)	Capacitance Tolerance	Failure Rate Q = APS	Terminations $\mathrm{T}=\text { Plated Ni and } \mathrm{Sn}^{* *}$	Packaging $2=7$ " Reel	Special Code A = Std. Product
AP05=0805	$25 \mathrm{~V}=3$	X7R = C	2 Significant Digits +	$J= \pm 5 \%$			$4=13$ "Reel	
AP06=1206	$50 \mathrm{~V}=5$		Number of Zeros	$K= \pm 10 \%$		$\mathrm{U}=$ Conductive Epoxy**		
AP10=1210	$100 \mathrm{~V}=1$		e.g. $10 \mu \mathrm{~F}=106$	$\mathrm{M}= \pm 20 \%$		$B=5 \%$ min lead ${ }^{\star * *}$		
AP12=1812	$200 \mathrm{~V}=2$					X $=$ FLEXITERM ${ }^{\oplus}$ with		
AP20=2220	$500 \mathrm{~V}=7$					5% min lead ${ }^{\star * *}$		
						**RoHS compliant		
						**Not RoHS compliant		

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

For RoHS compliant products, please select correct termination style.

NPO Automotive Plus Series / APS
Capacitance Range

		0603				0805			1206					1210				1812	
		25 V	50 V		100V	25 V	50 V	100V	25 V	50 V	100V	200 V	500 V	25V	50V	100V	200V	50 V	100 V
100	10pF	G	G		G	J	J	J	J	J	J	J	J						
120	12	G	G		G	J	J	J	J	J	J	J	J						
150	15	G	G		G	J	J	J	J	J	J	J	J						
180	18	G	G		G	J	J	J	J	J	J	J							
220	22	G	G		G	J	J	J	J	J	J	J							
270	27	G	G		G	J	J	J	J	J	J	J							
330	33	G	G		G	J	J	J	J	J	J	J							
390	39	G	G		G	J	J	J	J	J	J	J							
470	47	G	G		G	J	J	J	J	J	J	J							
510	51	G	G		G	J	J	J	J	J	J	J							
560	56	G	G		G	J	J	J	J	J	J	J							
680	68	G	G		G	J	J	J	J	J	J	J							
820	82	G	G		G	J	J	J	J	J	J	J							
101	100	G	G		G	J	J	J	J	J	J	J							
121	120	G	G		G	J	J	J	J	J	J	J							
151	150	G	G		G	J	J	J	J	J	J	J							
181	180	G	G		G	J	J	J	J	J	J	J							
221	220	G	G		G	J	J	J	J	J	J	J							
271	270	G	G		G	J	J	J	J	J	J	J							
331	330	G	G		G	J	J	J	J	J	J	J							
391	390	G	G			J	J	J	J	J	J	J							
471	470	G	G			J	J	J	J	J	J	J							
561	560					J	J	J	J	J	J	J							
681	680					J	J	J	J	J	J	J							
821	820					J	J	J	J	J	J	J							
102	1000					J	J	J	J	J	J	J		J	J	J	J		
122	1200								J	J	J			J	J	M	M		
152	1500								J	M	M			J	J	M	M		
182	1800								J	M	M			J	J	M	M		
222	2200								J	M	M			J	J	M	M		
272	2700								J	M				J	J	M			
332	3300								J	M				J	J	P		K	K
392	3900													J	J	P		K	K
472	4700													J	J	P		K	K
103	10nF																		
		25 V	50 V		100 V	25 V	50 V	100 V	25 V	50V	100V	200 V	500 V	25 V	50 V	100V	200 V	50 V	100 V
		0603				0805			1206					1210				1812	
		A		C		E	G	J		K	M	N	P		Q	X	Y		
$\begin{array}{r} M \\ \text { Thicl } \end{array}$	x. ness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$		$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$		$\begin{gathered} L \\ 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} \hline 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$		$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$		$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$		
		PAPER							EMBOSSED										

AEC-Q200 qualified TS 16949, ISO 9001 certified

X7R Automotive Plus Series / APS
 Capacitance Range

			0603					0805					1206						1210				1812		2220	
			16 V	25 V	50 V	100 V	200 V	16 V	25 V	50V	100 V	200 V	16 V	25 V	50 V	100 V	200 V	500 V	16 V	25 V	50 V	100 V	50 V	100 V	25 V	50 V
102	Cap	1	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
182	(nF)	1.8	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
222		2.2	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
332		3.3	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
472		4.7	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
103		10	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
123		12	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
153		15	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
183		18	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
223		22	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
273		27	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
333		33	G	G	G			J	J	J	M		J	J	J	J	J		K	K	K	K	K	K		
473		47	G	G	G			J	J	J	M		J	J	J	M	J		K	K	K	K	K	K		
563		56	G	G	G			J	J	J	M		J	J	J	M	J		K	K	K	M	K	K		
683		68	G	G	G			J	J	J	M		J	J	J	M	J		K	K	K	M	K	K		
823		82	G	G	G			J	J	J	M		J	J	J	M	J		K	K	K	M	K	K		
104		100	G	G	G			J	J	M	M		J	J	J	M	J		K	K	K	M	K	K		
124		120						J	J	M			J	J	M	M			K	K	K	P	K	K		
154		150						M	N	M			J	J	M	M			K	K	K	P	K	K		
224		220						M	N	M			J	M	M	Q			M	M	M	P	M	M		
334		330						N	N	M			J	M	P	Q			P	P	P	Q	X	X		
474		470						N	N	M			M	M	P	Q			P	P	P	Q	X	X		
684		680						N	N				M	Q	Q	Q			P	P	Q	X	X	X		
105	Cap	1						N	N				M	Q	Q	Q			P	Q	Q	X	X	X		
155	($\mu \mathrm{F}$)	1.5											Q	Q					P	Q	z	Z	X	X		
225		2.2											Q	Q					X	Z	Z	Z	Z	Z		
335		3.3																	X	Z	Z		Z			
475		4.7																	X	Z	Z		Z			
106		10																								Z
226		22																							Z	
			16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	200 V	500 V	16 V	25 V	50 V	100 V	50 V	100 V	25 V	50V
			0603					0805					1206						1210				1812		2220	

= Under Development

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

AEC-Q200 qualified TS 16949, ISO 9001 certified

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.
To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM ${ }^{\circledR}$. FLEXITERM ${ }^{\circledR}$ is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2 mm minimum. Using FLEXITERM ${ }^{\circledR}$, AVX provides up to 5 mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".
As well as for automotive applications FLEXITERM ${ }^{\circledR}$ will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5 mm bend test guaranteed.
- Increased temperature cycling performance, 3000 cycles and beyond.
- Flexible termination system.
- Reduction in circuit board flex failures.
- Base metal electrode system.
- Automotive or commercial grade products available.

APPLICATIONS

High Flexure Stress Circuit Boards

- e.g. Depanelization: Components near edges of board.

Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

Specifications and Test Methods

PERFORMANCE TESTING

AEC-Q200 Qualification:

- Created by the Automotive Electronics Council
- Specification defining stress test qualification for passive components

Testing:

Key tests used to compare soft termination to

AEC-Q200 qualification:

- Bend Test
- Temperature Cycle Test

BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM ${ }^{\circledR}$ Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

Style	Conventional Termination	FLEXITERM ${ }^{\ominus}$
0603	$>2 \mathrm{~mm}$	$>5 \mathrm{~mm}$
0805	$>2 \mathrm{~mm}$	$>5 \mathrm{~mm}$
1206	$>2 \mathrm{~mm}$	$>5 \mathrm{~mm}$

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for 1000 cycles
- Interim electrical measurements at 250,500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

BOARD BEND TEST PROCEDURE

According to AEC-Q200
Test Procedure as per AEC-Q200:
Sample size: 20 components
Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)

Fig 2 - Board Bend test equipment

AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

Bend Test

The capacitor is soldered to the printed circuit board as shown and is bent up to 10 mm at 1 mm per second:

- The board is placed on 2 supports 90 mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10 mm

MLCC with FLEXITERM ${ }^{\circledR}$

Specifications and Test Methods

BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM® TEST SUMMARY

- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to $+150^{\circ} \mathrm{C}$ bend test guaranteed greater than 5 mm).
- FLEXITERM ${ }^{\circledR}$ provides improved performance compared to standard termination systems.

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
- 0\% Failure up to 3000 cycles
- No ESR change up to 3000 cycles

WITH SOFT TERMINATION
 5 mm flexure.

MLCC with FLEXITERM ${ }^{\circledR}$

X8R Dielectric Capacitance Range

SIZE			0603		0805		1206	
		WVDC	25V	50 V	25V	50 V	25V	50 V
271	Cap	270	G	G				
331	(pF)	330	G	G	J	J		
471		470	G	G	J	J		
681		680	G	G	J	J		
102		1000	G	G	J	J	J	J
152		1500	G	G	J	J	J	J
182		1800	G	G	J	J	J	J
222		2200	G	G	J	J	J	J
272		2700	G	G	J	J	J	J
332		3300	G	G	J	J	J	J
392		3900	G	G	J	J	J	J
472		4700	G	G	J	J	J	J
562		5600	G	G	J	J	J	J
682		6800	G	G	J	J	J	J
822		8200	G	G	J	J	J	J
103	Cap	0.01	G	G	J	J	J	J
123	($\mu \mathrm{F}$)	0.012	G	G	J	J	J	J
153		0.015	G	G	J	J	J	J
183		0.018	G	G	J	J	J	J
223		0.022	G	G	J	J	J	J
273		0.027	G	G	J	J	J	J
333		0.033	G	G	J	J	J	J
393		0.039	G	G	J	J	J	J
473		0.047	G	G	J	J	J	J
563		0.056	G		N	N	M	M
683		0.068	G		N	N	M	M
823		0.082			N	N	M	M
104		0.1			N	N	M	M
124		0.12			N	N	M	M
154		0.15			N	N	M	M
184		0.18			N		M	M
224		0.22			N		M	M
274		0.27					M	M
334		0.33					M	M
394		0.39					M	
474		0.47					M	
684		0.68						
824		0.82						
105		1						
		WVDC	25V	50 V	25 V	50 V	25V	50 V
SIZE			0603		0805		1206	

| Letter | A | C | E | G | J | K | M | N | P | Q | X | X | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Z C

$\square=$ AEC-Q200 Qualified

MLCC with FLEXITERM ${ }^{\circledR}$

X7R Dielectric Capacitance Range

	0603					0805						1206					1210				1812				2220		
	16 V	25 V	50V	100 V	200 V	10 V	16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	16 V	25 V	50 V	100 V	25 V	50 V	100 V
101																											
121																											
151																											
181																											
221																											
271	J	J	J	J	J	J																					
331	J	J	J	J	J	J	J	J	J	J	J																
391	J	J	J	J	J	J	J	J	J	J	J																
471	J	J	J	J	J	J	J	J	J	J	J																
561	J	J	J	J	J	J	J	J	J	J	J																
681	J	J	J	J	J	J	J	J	J	J	J																
821	J	J	J	J	J	J	J	J	J	J	J																
102	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J											
122	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
152	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
182	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
222	J	J	J	J		J	J	J	J	J	J	,	J	J	J	J											
272	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
332	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
392	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
472	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
562	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
682	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
822	J	J	J	J		J	J	J	J	J	J	J	J	J	J	J											
103	J	J	J	J		J	J	J	J	J	J	,	J	J	J	J											
123	J	J	J			J	J	J	J	M		J	J	J	J	J											
153	J	J	J			J	J	J	J	M		J	J	J	J	J											
183	J	J	J			J	J	J	J	M		J	J	J	J	J											
223	J	J	J			J	J	J	J	M		J	J	J	J	J				K							
273	J	J	J			J	J	J	J	M		J	J	J	J	J				K							
333	J	J	J			J	J	J	J	M		J	J	J	J	J				K							
393	J	J	J			J	J	J	J	M		J	J	J	M	J				K							
473	J	J	J			J	J	J	J	M		J	J	J	M	J				K							
563	J	J	J			J	J	J	J	N		J	J	J	M	J	K	K	K	M	K	K	K	K			
683	J	J	J			J	J	J	J	N		J	J	J	M	J	K	K	K	M	K	K	K	K			
823	J	J	J			J	J	J	J	N		J	J	J	P	J	K	K	K	M	K	K	K	K			
104	J	J	J			J	J	J	J	N		J	J	J	Q	J	K	K	K	P	K	K	K	K	X	X	X
124						J	J	J	N	N		J	J	P	Q		K	K	K	Q	K	K	K	K			
154						M	M	N	N	N		J	J	P	Q		K	K	K	Q	K	K	K	M	X	X	X
184						M	M	N	N	N		J	M	P	Q		M	M	M	Q	K	K	K	M			
224						M	M	N	N	N		J	M	P	Q		M	M	M	Q	M	M	M	X	X	X	X
274						N	N	N	N	N		J	M	P	Q		P	P	P	Q	M	M	M	X			
334						N	N	N	N	N		J	M	P	Q		P	P	P	Q	M	M	M	X	X	X	X
394						N	N	N	N	N		M	M	P	Q		P	P	P	Q	X	X	X	X			
474						N	N	N	N	N		M	M	P	Q		P	P	P	Q	X	X	X	X	X	X	X
564						N	N	N				M	Q	Q	Q		P	Q	Q	Q	X	X	X	Z			
684						N	N	N				M	Q	Q	Q		P	X	X	\times	X	X	X	Z	X	X	X
824						N	N	N				M	Q	Q	Q		P	Z	Z	Z	X	X	X	Z			
105						N	N	N				M	Q	Q	Q		P	Z	Z	z	X	X	X	Z	X	X	X
155												Q	Q				P	Z	Z	z			Z	Z	X	X	X
185												Q	Q				Z	Z	Z	Z			Z	Z			
225												Q	Q				z	Z	Z	Z			z	Z	X	X	X
335																	Z	Z	Z				Z				Z
475																	z	Z	Z				Z				7
106																									Z	Z	
226																									Z		
	16 V	25 V	50 V	100 V	200 V	10 V	16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	200 V	16 V	25 V	50 V	100 V	16 V	25 V	50 V	100 V	25 V	50 V	100 V
			0603											1206												2220	

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

FLEXISAFE MLC Chips

For Ultra Safety Critical Applications

AVX have developed a range of components specifically for safety critical applications.
Utilizing the award-winning FLEXITERM ${ }^{\text {™ }}$ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.
The FLEXITERM ${ }^{\text {™ }}$ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM ${ }^{\text {TM }}$ layer, the FLEXISAFE range of capacitors has unbeatable safety features.

HOW TO ORDER

Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. $10 \mu \mathrm{~F}=106$

FLEXISAFE X7R RANGE

Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of $>40 \%$ vs. 4×0402 discrete capacitors and of $>70 \%$ vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.
A reduction of 40 placements increases throughput by 18%.

For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2 -element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20 Hr operational day a machine places 720 K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.
Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)

GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The smallest array option available from AVX, the 0405 2-element device, has been an enormous success in the Telecommunications market. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4 -element series, all of which have received widespread acceptance in the marketplace.
AVX capacitor arrays are available in X5R, X7R and NPO (COG) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).
Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

COMPLIANT

Capacitor Array
Capacitance Range - NPO/COG

SIZE		0508			0612		
\# Elements		4			4		
Soldering		Reflow/Wave			Reflow/Wave		
Packaging		Paper/Embossed			Paper/Embossed		
Length	mm (in.)	$\begin{gathered} 1.30 \pm 0.15 \\ (0.051 \pm 0.006) \end{gathered}$			$\begin{gathered} 1.60 \pm 0.150 \\ (0.063 \pm 0.006) \end{gathered}$		
Width	mm (in.)	$\begin{gathered} 2.10 \pm 0.15 \\ (0.083 \pm 0.006) \\ \hline \end{gathered}$			$\begin{aligned} & 3.20 \pm 0.20 \\ &(0.126 \pm 0.008) \\ & \hline \end{aligned}$		
Max. Thickness	mm (in.)	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$			$\begin{gathered} 1.35 \\ (0.053) \\ \hline \end{gathered}$		
WVDC		16	25	50	16	25	50
$\begin{array}{\|l\|} \hline \text { 1R0 } \\ \text { 1R2 } \\ \text { 1R5 } \\ \hline \end{array}$	$\begin{array}{cc} \hline \text { Cap } & 1.0 \\ \text { (pF) } & 1.2 \\ & 1.5 \\ \hline \end{array}$						
$\begin{array}{\|l} \hline \text { 1R8 } \\ \text { 2R2 } \\ \text { 2R7 } \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & 2.2 \\ & 2.7 \\ & \hline \end{aligned}$						
$\begin{array}{\|l\|} \hline \text { 3R3 } \\ \text { 3R9 } \\ \text { 4R7 } \end{array}$	$\begin{aligned} & \hline 3.3 \\ & 3.9 \\ & 4.7 \end{aligned}$						
$\begin{array}{\|l\|} \hline \text { 5R6 } \\ \text { 6R8 } \\ \text { 8R2 } \end{array}$	$\begin{aligned} & \hline 5.6 \\ & 6.8 \\ & 8.2 \end{aligned}$						
$\begin{array}{\|l\|} \hline 100 \\ 120 \\ 150 \end{array}$	$\begin{aligned} & \hline 10 \\ & 12 \\ & 15 \end{aligned}$						
$\begin{array}{\|l\|} \hline 180 \\ 220 \\ 270 \end{array}$	$\begin{aligned} & 18 \\ & 22 \\ & 27 \end{aligned}$						
$\begin{array}{\|l\|} \hline 330 \\ 390 \\ 470 \end{array}$	$\begin{aligned} & 33 \\ & 39 \\ & 47 \end{aligned}$						
$\begin{array}{\|l\|} \hline 560 \\ 680 \\ 820 \\ \hline \end{array}$	$\begin{aligned} & 56 \\ & 68 \\ & 82 \\ & \hline \end{aligned}$						
$\begin{array}{\|l\|} \hline 101 \\ 121 \\ 151 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & 120 \\ & 150 \\ & \hline \end{aligned}$						
$\begin{array}{\|l\|} \hline 181 \\ 221 \\ 271 \end{array}$	$\begin{aligned} & \hline 180 \\ & 220 \\ & 270 \end{aligned}$						
$\begin{array}{\|l\|} \hline 331 \\ 391 \\ 471 \\ \hline \end{array}$	$\begin{aligned} & 330 \\ & 390 \\ & 470 \end{aligned}$						
$\begin{array}{\|l\|} \hline 561 \\ 681 \\ 821 \\ \hline \end{array}$	$\begin{aligned} & 560 \\ & 680 \\ & 820 \end{aligned}$						
$\begin{array}{\|l\|} \hline 102 \\ 122 \\ 152 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & 1200 \\ & 1500 \\ & \hline \end{aligned}$						
$\begin{array}{\|l\|} \hline 182 \\ 222 \\ 272 \end{array}$	$\begin{aligned} & \hline 1800 \\ & 2200 \\ & 2700 \end{aligned}$						
$\begin{array}{\|l\|} \hline 332 \\ 392 \\ 472 \end{array}$	$\begin{aligned} & 3300 \\ & 3900 \\ & 4700 \end{aligned}$						
$\begin{array}{\|l\|} \hline 562 \\ 682 \\ 822 \\ \hline \end{array}$	$\begin{aligned} & \hline 5600 \\ & 6800 \\ & 8200 \\ & \hline \end{aligned}$						

= Supported Values

Capacitor Array

Capacitance Range - X7R

Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.
AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.
All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

$\frac{\text { W }}{T}$	3	$\frac{A}{T}$	4	$\begin{aligned} & \mathbf{Y} \\ & T \end{aligned}$	C	104
$\begin{aligned} & \text { Style } \\ & \mathrm{W}=\text { RoHS } \\ & \mathrm{L}=\text { SnPb } \end{aligned}$	$\begin{gathered} \text { Case } \\ \text { Size } \\ 2=0508 \\ 3=0612 \end{gathered}$	Array	Number of Caps	Voltage $Z=10 \mathrm{~V}$ $\mathrm{Y}=16 \mathrm{~V}$ $3=25 \mathrm{~V}$ $5=50 \mathrm{~V}$ $1=100 \mathrm{~V}$	$\begin{aligned} & \text { Dielectric } \\ & A=N P 0 \\ & C=X 7 R \\ & F=X 8 R \end{aligned}$	Capacitance Code (In pF) Significant Digits + Number of Zeros $\text { e.g. } 10 \mu \mathrm{~F}=106$

K	4	T	2A
Capacitance Tolerance$\begin{aligned} & * J= \pm 5 \% \\ & * K= \pm 10 \% \\ & M= \pm 20 \% \end{aligned}$	Failure Rate 4 = Automotive	Terminations T = Plated Ni and Sn** $\mathrm{Z}=\mathrm{FLEXIT}^{2} \mathrm{RM}^{\text {®** }}$ B = 5\% min lead $\mathrm{X}=\mathrm{FLEXITERM}^{\circledR}$ with 5% min lead	Packaging
			\& Quantity
			Code
			$2 \mathrm{~A}=7$ " Reel
			(4000)
			$4 \mathrm{~A}=13^{\prime \prime}$ Reel
			10000)
		**RoHS compliant	(1000)
			(1000)

*Contact factory for availability by part number for $\mathrm{K}= \pm 10 \%$ and $\mathrm{J}= \pm 5 \%$ tolerance.

$\square=\mathrm{NPO} / \mathrm{COG}$

		X7R													X8R
SIZE		0508				0508				0612					0405
No. of Elements		2				4				4					2
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100	16
$\begin{aligned} & 101 \\ & 121 \\ & 151 \end{aligned}$	$\begin{aligned} & \text { Cap } 100 \\ & \text { (pF) } 120 \\ & 150 \end{aligned}$														
$\begin{aligned} & 181 \\ & 221 \\ & 271 \end{aligned}$	$\begin{aligned} & 180 \\ & 220 \\ & 270 \end{aligned}$														
$\begin{aligned} & 331 \\ & 391 \\ & 471 \end{aligned}$	$\begin{aligned} & 330 \\ & 390 \\ & 470 \end{aligned}$														
$\begin{aligned} & 561 \\ & 681 \\ & 821 \end{aligned}$	$\begin{aligned} & 560 \\ & 680 \\ & 820 \end{aligned}$														
$\begin{aligned} & 102 \\ & 122 \\ & 152 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1200 \\ & 1500 \end{aligned}$														
$\begin{aligned} & 182 \\ & 222 \\ & 272 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2200 \\ & 2700 \end{aligned}$														
$\begin{aligned} & 332 \\ & 392 \\ & 472 \end{aligned}$	$\begin{aligned} & 3300 \\ & 3900 \\ & 4700 \end{aligned}$														
$\begin{aligned} & 562 \\ & 682 \\ & 822 \end{aligned}$	$\begin{aligned} & 5600 \\ & 6800 \\ & 8200 \end{aligned}$														
$\begin{aligned} & 103 \\ & 123 \\ & 153 \end{aligned}$	$\begin{array}{r} \text { Cap } 0.010 \\ (\mu \mathrm{~F}) 0.012 \\ 0.015 \end{array}$														
$\begin{aligned} & 183 \\ & 223 \\ & 273 \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.022 \\ & 0.027 \end{aligned}$														
$\begin{aligned} & 333 \\ & 393 \\ & 473 \end{aligned}$	$\begin{aligned} & \hline 0.033 \\ & 0.039 \\ & 0.047 \end{aligned}$														
$\begin{aligned} & 563 \\ & 683 \\ & 823 \end{aligned}$	$\begin{aligned} & \hline 0.056 \\ & 0.068 \\ & 0.082 \end{aligned}$														
$\begin{aligned} & 104 \\ & 124 \\ & 154 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.12 \\ & 0.15 \end{aligned}$														
224	0.22														
$=X 8 R$															

/AVMK

PART \& PAD LAYOUT DIMENSIONS
millimeters (inches)

PART DIMENSIONS

0405-2 Element

L	W	T	BW	BL	P	S
$\begin{gathered} 1.00 \pm 0.15 \\ (0.039 \pm 0.006) \end{gathered}$	$\left(\begin{array}{r} 1.37 \pm 0.15 \\ (0.054 \pm 0.006) \end{array}\right.$	0.66 MAX (0.026 MAX)	$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} (0.36 \pm \pm 0.004 \end{array}\right)$	$\begin{gathered} 0.20 \pm 0.10 \\ (0.008 \pm 0.004) \end{gathered}$	$\begin{gathered} 0.64 \mathrm{REF} \\ (0.025 \mathrm{REF}) \end{gathered}$	$\begin{gathered} 0.32 \pm 0.10 \\ (0.013 \pm 0.004) \end{gathered}$

0508-2 Element

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}	\mathbf{S}
1.30 ± 0.15 $(0.051 \pm 0.006)$$\left(\begin{array}{c}2.10 \pm 0.15 \\ (0.083 \pm 0.006)\end{array}\right.$	0.94 MAX $(0.037 \mathrm{MAX})$	0.43 ± 0.10	(0.017 ± 0.004)	$(0.33 \pm 0.013 \pm 0.003)$	1.00 REF	
$(0.039 \mathrm{REF})$	0.50 ± 0.10	(0.020 ± 0.004)				

0508-4 Element

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}	\mathbf{X}	\mathbf{S}
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	$(0.037 \mathrm{MAX})$	(0.010 ± 0.003)	(0.008 ± 0.003)	$(0.020 \mathrm{REF})$	(0.030 ± 0.004)	(0.010 ± 0.004)

0612-4 Element

L	W	T	BW	BL	P	X	S
$\binom{1.60 \pm 0.20}{(0.063 \pm 0.008)}$	$\binom{3.20 \pm 0.20}{(0.126 \pm 0.008)}$	$\begin{gathered} 1.35 \mathrm{MAX} \\ \text { (0.053 MAX) } \end{gathered}$	$\left\lvert\, \begin{gathered} 0.41 \pm 0.10 \\ (0.016 \pm 0.004) \end{gathered}\right.$	$\left.\begin{array}{c} 0.18{ }^{+0.0 .08} \\ (0.007+0.010) \\ -0.003 \end{array}\right)$	$\begin{aligned} & 0.76 \text { REF } \\ & \text { (0.030 REF) } \end{aligned}$	$\left\|\begin{array}{c} 1.14 \pm 0.10 \\ (0.045 \pm 0.004) \end{array}\right\|$	$\binom{0.38 \pm 0.10}{(0.015 \pm 0.004)}$

PAD LAYOUT DIMENSIONS 0405-2 Element

A	B	C	D	E
0.46	0.74			
(0.018)	(0.029)	1.20		
(0.047)	0.30			
(0.012)	0.64			
(0.025)				

0508-2 Element

A	B	C	D	E
0.68	1.32	2.00	0.46	
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508-4 Element

A	B	C	D	E
0.56				
(0.022)	1.32	1.88		
(0.052)	(0.074)	0.30		
(0.012)	0.50			
(0.020)				

0612-4 Element

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
0.89	1.65	2.54		
(0.035)	(0.065)	0.46		
(0.100)	(0.018)	0.76		
(0.030)				

Low Inductance Capacitors

 IntroductionThe signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300 MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.
The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.
An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one
capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).
The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.
An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

Introduction

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.
The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 03068 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.
LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA ${ }^{\circledR}$ product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.
LICA ${ }^{\circledR}$ products are used in 99.999\% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA ${ }^{\circledR}$.
LICA ${ }^{\circledR}$ products with either $\mathrm{Sn} / \mathrm{Pb}$ or Pb -free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA ${ }^{\circledR}$ devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.
When high reliability decoupling applications require the very lowest ESL capacitors, LICA ${ }^{\circledR}$ products are the best option.

470 nF 0306 Impedance Comparison

Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Capacitors (RoHS) 0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

AVX LICC products are available with a lead-free finish of plated Nickel/Tin.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	$K= \pm 10 \% ; M= \pm 20 \%$
Operation	X7R $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range	$\begin{aligned} & \text { X5R }=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { X7S }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient	X7R, $\mathrm{X} 5 \mathrm{R}= \pm 15 \%$; P (S $= \pm 22 \%$
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\begin{aligned} 4 \mathrm{~V}, 6.3 \mathrm{~V} & =6.5 \% \text { max; } 10 \mathrm{~V}=5.0 \% \text { max; } \\ 16 \mathrm{~V} & =3.5 \% \text { max; } 25 \mathrm{~V}=3.0 \% \text { max } \end{aligned}$
Insulation Resistance (@+25 ${ }^{\circ} \mathrm{C}$, RVDC)	$100,000 \mathrm{M} \Omega \mathrm{min}$, or $1,000 \mathrm{M} \Omega$ per $\mu \mathrm{F}$ min., whichever is less

HOW TO ORDER

0612	Z	D	105	M	A	T	2	A^{*}
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure Rate	Terminations	Packaging	Thickness
0204	4 = 4V	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	Code (ln pF)	Tolerance	$\mathrm{A}=\mathrm{N} / \mathrm{A}$	T = Plated Ni	Available	Thickness
0306	$6=6.3 \mathrm{~V}$	$D=X 5 R$	2 Sig. Digits +	$K= \pm 10 \%$		and Sn	$2=7$ "Reel	mm (in)
0508	$\mathrm{Z}=10 \mathrm{~V}$	$\mathrm{W}=\mathrm{X} 6 \mathrm{~S}$	Number of Zeros	$\mathrm{M}= \pm 20 \%$			4 = 13" Reel	0.35 (0.014)
0612	$Y=16 \mathrm{~V}$	$Z=X 7 S$						0.56 (0.022)
	$3=25 \mathrm{~V}$							0.61 (0.024)
	$5=50 \mathrm{~V}$							0.76 (0.030)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.								1.02 (0.040)
								1.27 (0.050)

TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors (RoHS) /AV/X 0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS mm (in)

	\mathbf{L}	\mathbf{W}	\mathbf{t}
$\mathbf{0 6 1 2}$	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
	(0.063 ± 0.010)	(0.126 ± 0.010)	$(0.005 \mathrm{~min})$.
$\mathbf{0 5 0 8}$	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
	(0.050 ± 0.010)	(0.080 ± 0.010)	$(0.005 \mathrm{~min})$.
$\mathbf{0 3 0 6}$	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
	(0.032 ± 0.006)	(0.063 ± 0.006)	$(0.005 \mathrm{~min})$.
$\mathbf{0 2 0 4}$	0.50 ± 0.05	1.00 ± 0.05	0.18 ± 0.08
	(0.020 ± 0.002)	(0.040 ± 0.002)	(0.007 ± 0.003)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS mm (in)

	A	B	C
0612	$0.76(0.030)$	$3.05(0.120)$	$.635(0.025)$
0508	$0.51(0.020)$	$2.03(0.080)$	$0.51(0.020)$
0306	$0.31(0.012)$	$1.52(0.060)$	$0.51(0.020)$
0204			

Low Inductance Capacitors (SnPb)

0612/0508/0306/0204 Tin Lead Termination "B"

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60\% or more with an LICC versus a standard MLCC.
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

Not RoHS Compliant

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	$K= \pm 10 \% ; M= \pm 20 \%$
Operation	X7R $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range	$\begin{aligned} & \text { X5R }=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { X7S }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient	X7R, X5R = $\pm 15 \%$; X7S = $\pm 22 \%$
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\begin{gathered} 4 \mathrm{~V}, 6.3 \mathrm{~V}=6.5 \% \text { max; } 10 \mathrm{~V}=5.0 \% \text { max; } \\ 16 \mathrm{~V}=3.5 \% \text { max; } 25 \mathrm{~V}=3.0 \% \text { max } \end{gathered}$
Insulation Resistance (@+25 ${ }^{\circ} \mathrm{C}$, RVDC)	$100,000 \mathrm{M} \Omega \mathrm{min}$, or $1,000 \mathrm{M} \Omega$ per $\mu \mathrm{F}$ min., whichever is less

HOW TO ORDER

TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors (SnPb)

0612/0508/0306/0204 Tin Lead Termination "B"

PREFERRED SIZES ARE SHADED

Solid = X7R

$=\mathrm{X} 5 \mathrm{R}$
mm (in.)

LD16-0306
Code Thickness

A 0.61 (0.024)

mm (in.)	
LD17 - 0508	
Code	Thickness
S	$0.56(0.022)$
V	$0.76(0.030)$
A	$1.02(0.040)$

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS mm (in)

	L	W	t
0612	$\begin{gathered} 1.60 \pm 0.25 \\ (0.063 \pm 0.010) \end{gathered}$	$\begin{gathered} 3.20 \pm 0.25 \\ (0.126 \pm 0.010) \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~min} . \\ (0.005 \mathrm{~min} .) \end{gathered}$
0508	$\begin{aligned} 1.27 & \pm 0.25 \\ (0.050 & \pm 0.010) \end{aligned}$	$\begin{gathered} 2.00 \pm 0.25 \\ (0.080 \pm 0.010) \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~min} . \\ (0.005 \mathrm{~min} .) \end{gathered}$
0306	$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \\ \hline \end{gathered}$	$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \\ \hline \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~min} . \\ (0.005 \mathrm{~min} .) \end{gathered}$
0204	$\begin{gathered} 0.50 \pm 0.05 \\ (0.020 \pm 0.002) \end{gathered}$	$\begin{gathered} 1.00 \pm 0.05 \\ (0.040 \pm 0.002) \end{gathered}$	$\begin{gathered} 0.18 \pm 0.08 \\ (0.007 \pm 0.003) \end{gathered}$

T - See Range Chart for Thickness and Codes
PAD LAYOUT DIMENSIONS \quad mm (in)

	A	B	C
0612	$0.76(0.030)$	$3.05(0.120)$	$.635(0.025)$
0508	$0.51(0.020)$	$2.03(0.080)$	$0.51(0.020)$
0306	$0.31(0.012)$	$1.52(0.060)$	$0.51(0.020)$
0204			

IDC Low Inductance Capacitors (RoHS)/AV/Z 0306/0612/0508 IDC (InterDigitated Capacitors)

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95 mm or 0.55 mm .

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on $0.13 \mu, 90 \mathrm{~nm}, 65 \mathrm{~nm}$, and 45 nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55 mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.
IDCs are used for board level decoupling of systems with speeds of 300 MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.
The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).
AVX IDC products are available with a lead-free finish of plated Nickel/Tin.

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	$\pm 20 \%$ Preferred
Operation	X7R $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range	$\begin{aligned} & \text { X5R }=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { X7S }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient	$\pm 15 \%$ (0VDC), $\pm 22 \%$ (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\begin{aligned} \leq 6.3 V & =6.5 \% \text { max; } \\ 10 \mathrm{~V} & =5.0 \% \max ; \\ \geq 16 \mathrm{~V} & =3.5 \% \max \end{aligned}$
Insulation Resistance (@+25․․ RVDC)	$100,000 \mathrm{M} \Omega \mathrm{min}$, or $1,000 \mathrm{M} \Omega$ per $\mu \mathrm{F}$ min., whichever is less

Dielectric Strength	No problems observed after $2.5 \times$ RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	$4-5 \mathrm{~W} / \mathrm{M} \mathrm{K}$
Terminations Available	Plated Nickel and Solder

IDC Low Inductance Capacitors (RoHS)/AV/ 0306/0612/0508 IDC (InterDigitated Capacitors)

SIZE	0306		Thin 0508					0508					Thin 0612				0612					THICK 0612			
$\left.\begin{array}{ll}\text { Max. } & \mathrm{mm} \\ \text { Thickness } & \text { (in.) }\end{array}\right]$	$\begin{gathered} 0.55 \\ (0.022) \\ \hline \end{gathered}$		$\begin{gathered} 0.55 . \\ (0.022) \\ \hline \end{gathered}$					$\begin{gathered} 0.95 \\ (0.037) \\ \hline \end{gathered}$					$\begin{gathered} 0.55 \\ (0.022) \\ \hline \end{gathered}$				$\begin{gathered} 0.95 \\ (0.037) \end{gathered}$					$\begin{gathered} 1.22 \\ (0.048) \\ \hline \end{gathered}$			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
$\begin{array}{ll} \hline \text { Cap } & \\ (\mu \mathrm{F}) & 0.010 \\ \hline \end{array}$																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS millimeters (inches)

SIZE	\mathbf{W}	\mathbf{L}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}
$\mathbf{0 3 0 6}$	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	(0.063 ± 0.008)	$(0.032 \pm 0.006$	(0.010 ± 0.004)	(0.008 ± 0.004)	(0.015 ± 0.002)
$\mathbf{0} \mathbf{0 5 0 8}$	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010 ± 0.006)	(0.020 ± 0.002)
$\mathbf{0} \mathbf{0 6 1 2}$	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

Consult factory for additional requirements

PAD LAYOUT DIMENSIONS

SIZE	A	B	C	D	E
$\mathbf{0 3 0 6}$	0.38				
	(0.015)	0.89	1.27	0.20	
(0.035)	(0.050)	(0.008)	0.40 (0.015)		
$\mathbf{0 5 0 8}$	0.64 (0.025)	1.27	1.91	0.28	0.50
	(0.050)	(0.075)	(0.011)	(0.020)	
$\mathbf{0 6 1 2}$	0.89 (0.035)	1.65 (0.065)	2.54 (0.010)	0.45 (0.018)	0.80 (0.031)

IDC Low Inductance Capacitors (SnPb) /AV/Z 0306/0612/0508 IDC with Sn/Pb Termination

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95 mm or 0.55 mm .
IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on $0.13 \mu, 90 \mathrm{~nm}, 65 \mathrm{~nm}$, and 45 nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55 mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.
IDCs are used for board level decoupling of systems with speeds of 300 MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.
The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).
AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

TYPICAL IMPEDANCE

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	$\pm 20 \%$ Preferred
Operation	X7R $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range	$\begin{aligned} & \text { X5R }=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { X7S }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient	$\pm 15 \%$ (0VDC), $\pm 22 \%$ (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\begin{aligned} \leq 6.3 V & =6.5 \% \text { max; } \\ 10 V & =5.0 \% \text { max; } \\ \geq 16 V & =3.5 \% \max \end{aligned}$
Insulation Resistance (@+25오, RVDC)	$100,000 \mathrm{M} \Omega \mathrm{min}$, or $1,000 \mathrm{M} \Omega$ per $\mu \mathrm{F}$ min.,whichever is less

Dielectric Strength	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	$4-5 \mathrm{~W} / \mathrm{M} \mathrm{K}$
Terminations Available	Plated Nickel and Solder

IDC Low Inductance Capacitors (SnPb) 0306/0612/0508 IDC with Sn/Pb Termination

SIZE	0306		Thin 0508					0508					Thin 0612				0612					THICK 0612			
$\begin{array}{ll} \hline \text { Max. } & \mathrm{mm} \\ \text { Thickness } & \text { (in.) } \end{array}$	$\begin{gathered} 0.55 \\ (0.022) \\ \hline \end{gathered}$		$\begin{gathered} 0.55 . \\ (0.022) \\ \hline \end{gathered}$					$\begin{gathered} 0.95 \\ (0.037) \\ \hline \end{gathered}$					$\begin{gathered} 0.55 \\ (0.022) \\ \hline \end{gathered}$				$\begin{gathered} 0.95 \\ (0.037) \\ \hline \end{gathered}$					$\begin{gathered} 1.22 \\ (0.048) \\ \hline \end{gathered}$			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
$\begin{array}{ll\|} \hline \text { Cap } & \\ (\mu \mathrm{F}) & 0.010 \\ \hline \end{array}$																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS millimeters (inches)

SIZE	\mathbf{W}	\mathbf{L}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}
$\mathbf{0 3 0 6}$	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	(0.063 ± 0.008)	$(0.032 \pm 0.006$	(0.010 ± 0.004)	(0.008 ± 0.004)	(0.015 ± 0.002)
$\mathbf{0} \mathbf{0 5 0 8}$	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010 ± 0.006)	(0.020 ± 0.002)
$\mathbf{0} \mathbf{0 6 1 2}$	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

Consult factory for additional requirements

PAD LAYOUT DIMENSIONS

SIZE	A	B	C	D	E
$\mathbf{0 3 0 6}$	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
$\mathbf{0 5 0 8}$	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
$\mathbf{0 6 1 2}$	0.89 (0.035)	1.65 (0.065)	2.54 (0.010)	0.45 (0.018)	0.80 (0.031)

LGA Low Inductance Capacitors 0204/0306/0805 Land Grid Arrays

APPLICATIONS

Semiconductor Packages

- Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance. Electronic Products awarded its 2006 Product of the Year Award to the LGA Decoupling capacitor.
Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- Better solder joint reliability

Board Level Device Decoupling

- Frequencies of 300 MHz or more
- ICs drawing 15W or more
- Low voltages
- High speed buses

03062 TERMINAL LGA COMPARISON WITH 03068 TERMINAL IDC

LGA Low Inductance Capacitors
 0204/0306/0805 Land Grid Arrays

/AVMX

HOW TO ORDER

LG	1	2	6	\mathbf{Z}	104	$\stackrel{\mathbf{M}}{\top}$	A	T	2	S	T
Style	Case Size $1=0204$ $2=0306$ $C=0805$	Number of Terminals 2	Working Voltage $\begin{aligned} & 6=6.3 V \\ & Z=10 V\end{aligned}$	Temperature Characteristic $\begin{aligned} & C=X 7 R \\ & D=X 5 R \\ & Z=X 7 S \\ & N=X 6 S \end{aligned}$ $W=X 6 S$	Coded Cap	$\begin{gathered} \text { Cap } \\ \text { Tolerance } \\ M=20 \% \end{gathered}$	$\begin{aligned} & \text { Termination } \\ & \text { Style "U" Land } \end{aligned}$	Termination 100% Sn* * *Contact factory for finishes	Packaging Tape \& Reel $2=7 "$ Reel $4=13^{\prime \prime}$ Reel	$\begin{gathered} \text { Thickness } \\ S=0.55 \mathrm{~mm} \\ \max \end{gathered}$	Number of Capacitors

PART DIMENSIONS

Series	L	W	T	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020 ± 0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ± 0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)
	LGC2 (0805)	2.06 ± 0.10	1.32 ± 0.10	0.50 ± 0.05	1.14 ± 0.10
0	(0.081 ± 0.004)	(0.052 ± 0.004)	(0.020 ± 0.002)	(0.045 ± 0.004)	(0.035 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS
 mm (inches)

Series	PL	PW1	G
LG12 (0204)	$0.50(0.020)$	$1.00(0.039)$	$0.20(0.008)$
LG22 (0306)	$0.65(0.026)$	$1.50(0.059)$	$0.20(0.008)$
LGC2 (0805)	$1.25(0.049)$	$1.40(0.055)$	$0.20(0.008)$

LGA Low Inductance Capacitors

0204/0306/0805 Land Grid Arrays - Tin/Lead Termination "B"

HOW TO ORDER

PART DIMENSIONS
mm (inches)

Series	\mathbf{L}	\mathbf{W}	\mathbf{T}	BW	BL
PG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020 ± 0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ± 0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)
PGC2 (0805)	2.06 ± 0.10	1.32 ± 0.10	0.50 ± 0.05	1.14 ± 0.10	0.90 ± 0.08
	(0.081 ± 0.004)	(0.052 ± 0.004)	(0.020 ± 0.002)	(0.045 ± 0.004)	(0.035 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS mm (inches)

PL	Series	PL	PW1	G
$\frac{1}{16}$	PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
	PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)
PW1	PGC2 (0805)	1.25 (0.049)	1.40 (0.055)	0.20 (0.008)

Low Inductance Capacitors

LICA ${ }^{\circledR}$ (Low Inductance Decoupling Capacitor Arrays)

LICA ${ }^{\circledR}$ arrays utilize up to four separate capacitor sections in one ceramic body (see Configurations and Capacitance Options). These designs exhibit a number of technical advancements:
Low Inductance features-
Low resistance platinum electrodes in a low aspect ratio pattern
Double electrode pickup and perpendicular current paths
C4 "flip-chip" technology for minimal interconnect inductance

HOW TO ORDER

LICA	3	T	102	M	3	F
Style \&	Voltage $5 \mathrm{~V}=9$	Dielectric $D=X 5 R$	Cap/Section (EIA Code)	Capacitance Tolerance	Height Code	$\begin{gathered} \text { Termination } \\ \mathrm{F}=\mathrm{C} 4 \text { Solder } \end{gathered}$
Size	$10 \mathrm{~V}=\mathrm{Z}$	$T=T 55 T$	$102=1000 \mathrm{pF}$	$\mathrm{M}= \pm 20 \%$	$6=0.500 \mathrm{~mm}$	Balls- 97Pb/3Sn
	$25 \mathrm{~V}=3$	S = High K	$103=10 \mathrm{nF}$	$\mathrm{P}=\mathrm{GMV}$	$3=0.650 \mathrm{~mm}$	H = C4 Solder Balls
		T55T	$104=100 \mathrm{nF}$		$1=0.875 \mathrm{~mm}$	Low ESR
					$5=1.100 \mathrm{~mm}$	$\mathrm{G}=$ Lead Free SAC
					$7=1.600 \mathrm{~mm}$	$\mathrm{R}=\mathrm{Cr}-\mathrm{Cu}-\mathrm{Au}$
						$\mathrm{N}=\mathrm{Cr}-\mathrm{Ni}-\mathrm{Au}$
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.						$V=$ Eutectic Lea
						Tin Bump-
						37\%Pb/63\%Sn
TABLE 1						X = None

Typical Parameters	T55T/S55S	Units
Capacitance, $25^{\circ} \mathrm{C}$	Co	Nanofarads
Capacitance, $55^{\circ} \mathrm{C}$	$1.45 \times \mathrm{Co}$	Nanofarads
Capacitance, $85^{\circ} \mathrm{C}$	$0.7 \times \mathrm{Co}$	Nanofarads
Dissipation Factor 25°	15	Percent
ESR (Nominal)	20	Milliohms
DC Resistance	0.2	Ohms
IR (Minimum @25 $)$ (Design Dependent)	300	Megaohms
Dielectric Breakdown, Min	500	Volts
Thermal Coefficient of Expansion	8.5	ppm/ ${ }^{\circ} \mathrm{C} 25-100^{\circ}$
Inductance: (Design Dependent) (Nominal)	30	Pico-Henries
Frequency of Operation	DC to 5 Gigahertz	
Ambient Temp Range	-55° to $125^{\circ} \mathrm{C}$	

SOLDER BALL AND PAD DIMENSIONS

TERMINATION OPTIONS
SOLDER BALLS TERMINATION OPTION F, H, G OR V

Low Inductance Capacitors

LICA ${ }^{\circledR}$ (Low Inductance Decoupling Capacitor Arrays)

TEMPERATURE VS CAPACITANCE CHANGE

LICA COMMON PART NUMBER LIST

Part Number	Voltage	Thickness (mm)	Capacitors per Package
LICA3T193M3FC4AA	25	0.650	4
LICA3T153P3FC4AA	25	0.650	4
LICA3T134M1FC1AA	25	0.875	1
LICA3T104P1FC1AA	25	0.875	1
LICA3T333M1FC4AA	25	0.875	4
LICA3T263P3FC4AA	25	0.650	4
LICA3T244M5FC1AA	25	1.100	1
LICA3T194P5FC1AA	25	1.100	1
LICA3T394M7FC1AB	25	1.600	1
LICA3T314P7FC1AB	25	1.600	1
Extended Range			4
LICAZT623M3FC4AB	10	0.650	1
LICA3T104M3FC1A	25	0.650	1
LICA3T803P3FC1A	25	0.650	2
LICA3T423M3FC2A	25	0.650	2
LICA3T333P3FC2A	25	0.650	4
LICA3S253M3FC4A	25	0.650	4
LICAZD753M3FC4AD	10	0.650	1
LICAZD504M3FC1AB	10	0.650	1
LICAZD604M7FC1AB	10	1.600	4
LICA3D193M3FC4AB	25	0.650	

TYPICAL S21 FOR LICA AT SINGLE VIA

CONFIGURATION
Schematic

Code Face

Schematic		Code Face							
$\mathrm{O}_{0}^{\mathrm{D} 1} \mathrm{O}^{81}$	$\mathrm{O}_{2}^{\mathrm{D} 2} \stackrel{\mathrm{~B} 2}{\mathrm{O}}$	D1		B_{1}	${ }^{\text {A1 }}$	(0)	0	0	0
${ }_{\text {CAP } 1}$	$\square_{\text {CAP } 2}$	D2	C2	B2	A2	0	0	0	0
		D3	С3	B3	A3	0	O	O	0
$\mathrm{Cl}_{\mathrm{C} 1} \mathrm{O}$	$\mathrm{Cl}_{\mathrm{C} 2} \mathrm{O}_{\mathrm{A} 2}$	D4	C4	B4	A4	0	O	O	
$\mathrm{O}^{\mathrm{D} 3} \mathrm{O}^{83}$	$Q^{D 4} Q_{0}^{84}$								
$-\mathrm{CAP} 3$	$\square_{\text {cap } 4}$								
$\mathrm{Cl}_{\mathrm{C}}^{\mathrm{O}} \underset{\mathrm{AB}}{\mathbf{O}}$	$\mathrm{OC}_{\mathrm{C4}} \mathrm{O}$								

WAFFLE PACK OPTIONS FOR LICA ${ }^{\circledR}$

Note: Standard configuration is
Termination side down

LICA® PACKAGING SCHEME "M" AND "R"
8 mm conductive plastic tape on reel:
"M"=7" reel max. qty. 3,000, "R"=13" reel max. qty. 8,000

NEW 630V RANGE

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed $4^{\circ} \mathrm{C}$ per second. The preheat temperature must be within $50^{\circ} \mathrm{C}$ of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

HOW TO ORDER

1808	A	A	$\underline{271}$	K	A	1	1	A
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination*	Packaging	Special
Style	$600 \mathrm{~V} / 630 \mathrm{~V}=\mathrm{C}$	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	1 = $7^{\prime \prime}$ Reel**	Code
0805	$1000 \mathrm{~V}=\mathrm{A}$	NPO (COG) = A	+ no. of zeros)	COG:J = $\pm 5 \%$		T = Plated	$3=13$ "Reel	A = Standard
1206	$1500 \mathrm{~V}=\mathrm{S}$	$\mathrm{X} 7 \mathrm{R}=\mathrm{C}$	Examples:	K = $\pm 10 \%$		Ni and Sn		
1210	$2000 \mathrm{~V}=\mathrm{G}$		$10 \mathrm{pF}=100$	$\mathrm{M}= \pm 20 \%$		(RoHS Compliant)		
1808	$2500 \mathrm{~V}=\mathrm{W}$		$100 \mathrm{pF}=101$	X7R:K $= \pm 10 \%$				
1812	$3000 \mathrm{~V}=\mathrm{H}$		1,000 pF $=102$	$\mathrm{M}= \pm 20 \%$				
1825	$4000 \mathrm{~V}=\mathrm{J}$		22,000 pF $=223$	$\mathrm{Z}=+80 \%$,				
2220	$5000 \mathrm{~V}=\mathrm{K}$		$220,000 \mathrm{pF}=224$	-20\%				
2225			$1 \mu \mathrm{~F}=105$					
3640								
***			*N	te: Terminations w Leaded termina	th 5% minimum lead tions are available	ead (Pb) is available, se , see pages 89 and 90	pages 87 and	8 for LD style.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
** The 3640 Style is not available on 7 " Reels.
*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

SIZE	$\mathbf{0 8 0 5}$	$\mathbf{1 2 0 6}$	$\mathbf{1 2 1 0}^{*}$	$\mathbf{1 8 0 8}^{\boldsymbol{*}}$	$\mathbf{1 8 1 2}^{\boldsymbol{*}}$	$\mathbf{1 8 2 5}^{*}$	$\mathbf{2 2 2 0 *}$	$\mathbf{2 2 2 5 *}$	$\mathbf{3 6 4 0}^{\boldsymbol{*}}$
(L) Length	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.57 ± 0.25	4.50 ± 0.30	4.50 ± 0.30	5.70 ± 0.40	5.72 ± 0.25	9.14 ± 0.25
	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.180 ± 0.010)	(0.177 ± 0.012)	(0.177 ± 0.012)	(0.224 ± 0.016)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	2.03 ± 0.25	3.20 ± 0.20	6.40 ± 0.30	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.080 ± 0.010)	(0.126 ± 0.008)	(0.252 ± 0.012)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.30	1.52	1.70	2.03	2.54	2.54	3.30	2.54	2.54
Max.	(0.051)	(0.060)	(0.067)	(0.080)	(0.100)	(0.100)	(0.130)	(0.100)	(0.100)
(t) terminal	min.	0.50 ± 0.25	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$
	max.	(0.020 ± 0.010)	$0.75(0.030)$	$0.75(0.030)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$

[^1]
High Voltage MLC Chips

For 600V to 5000V Applications

NPO (COG) Dielectric

Performance Characteristics

Capacitance Range	10 pF to $0.047 \mu \mathrm{~F}\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz, for $\leq 1000 \mathrm{pF}$ use 1 MHz$)$
Capacitance Tolerances	$\pm 5 \%, \pm 10 \%, \pm 20 \%$
Dissipation Factor	$0.1 \% \max .\left(+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}\right.$, for $\leq 1000 \mathrm{pF}$ use 1 MHz$)$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \mathrm{to}+125^{\circ} \mathrm{C}$
Temperature Characteristic	$0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(0 \mathrm{VDC})$
Voltage Ratings	$600,630,1000,1500,2000,2500,3000,4000 \& 5000 \mathrm{VDC}\left(+125^{\circ} \mathrm{C}\right)$
Insulation Resistance $\left(+25^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{MS}-\mu \mathrm{F} \mathrm{min.} whichever is less$,
Insulation Resistance $\left(+125^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$10 \mathrm{~K} \Omega \mathrm{~min}$. or $100 \mathrm{M} \Omega-\mu \mathrm{FF}$ min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size			0805			1206					1210					1808								1812							
Soldering			Reflow/Wave			Reflow/Wave					Reflow Only					Reflow Only								Reflow Only							
(L) Length	m	$\operatorname{mm}_{(\mathrm{n} .)}$	$\begin{gathered} 2.01 \pm 0.20 \\ (0.079 \pm 0.008) \end{gathered}$			$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$					$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$					$\begin{gathered} 4.57 \pm \pm 0.25 \\ (0.180 \pm 0.010) \end{gathered}$								$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$							
(M) Width	$\frac{1}{2}$	$\underset{(i n .)}{m i n}$	$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \end{gathered}$			$\begin{gathered} 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \\ \hline \end{gathered}$					$\begin{gathered} 2.50 \pm 0.20 \\ (0.098 \pm 0.008) \\ \hline \end{gathered}$					$\begin{gathered} 2.03 \pm 0.25 \\ (0.080 \pm 0.010) \end{gathered}$								$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$							
(7) Thicknes		$\underset{(\mathrm{in} .)}{m_{m}}$	$\begin{aligned} & 1.30 \\ & (0.051) \end{aligned}$			$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$					$\begin{aligned} & 1.70 \\ & (0.067) \end{aligned}$					$\begin{gathered} 2.03 \\ (0.080) \end{gathered}$								$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$							
(t) Terminal	$\begin{aligned} & n \\ & m \end{aligned}$	$\begin{aligned} & \min \\ & \max \end{aligned}$	$\begin{gathered} 0.50 \pm \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$			$\begin{aligned} & 0.25(0.010 \\ & 0.75(0.030) \\ & 0.70 \end{aligned}$					$\begin{array}{r} 0.25(0.010) \\ 0.75(0.030) \\ \hline \end{array}$					$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \end{aligned}$								$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \\ & \hline \end{aligned}$							
Voltage M			600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
	Cap (pF) 1.5 185		A	A		\times	\times	\times	X	X																					
	1.8	1 R 8	A	A		\times	\times	x	\times	\times																					
	2.2	2 R 2	A	A		\times	\times	\times	\times	\times																					
	2.7	2R7	A	A		x	\times	X	\times	X								c	c	c	c	c									
	3.3	3R3	A	A		-	$\frac{\times}{x}$	x	x	x								c	c	c	c	c									
	3.9	3R9	A	A		X	X	X	X	X								c	c	C	C	C									
	4.7	4R7	A	A		X	X	X	X	X								C	c	C	C	c									
	5.6	5R6	A	A		X	\times	X	\times	X								C	c	C	c	C									
	6.8	6R8	A	A		\times	\times	x	\times	\times								c	c	c	c	c									
	8.2	8R2	A	A		\times	X	X	x	\times								C	c	C	c	c									
	10	100	A	A		X	\times	x	\times	\times	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	12	120	A	A		\times	\times	X	\times	\times	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	15	150	A	A		\times	\times	X	\times	X	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	18	180	A	A		X	X	X	X	X	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	22	220	A	A		X	X	X	X	X	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	27	270	A	A		X	X	X	X	X	c	C	D	D	D	C	c	c	C	C	C	C		c	C	C	C	c	C	C	
	33	330	A	A		X	X	X	D	D	c	c	D	D	D	c	c	C	c	C	c	C		c	c	c	c	c	c	c	
	39	390	A	A		\times	\times	X	D	D	c	c	D	D	D	c	c	c	c	C	c	c		c	c	c	C	c	c	C	
	47	470	A	A		x	\times	M	D	D	c	c	D	D	D	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	56	560	A	A		\times	\times	M	c	c	c	c	D	c	c	c	c	c	c	c	C	C		c	c	c	c	c	c	C	
	68	680	A	A		\times	\times	M	c	c	c	c	D	c	c	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	82	820	\times	\times		\times	\times	c	c	c	c	c	D	c	c	c	c	c	c	c	c	c		c	c	c	c	c	c	c	
	100	101	\times	\times		\times	\times	c	c	c	c	c	c	c	c	c	c	c	c	c	F	F		c	c	c	c	c	c	c	
	120	121	C	c		X	X	C	E	E	C	C	C	C	C	C	c	C	c	C	F	F		c	c	c	C	C	c	C	
	150	151	c	c		x	x	C	E	E	c	c	c	E	E	c	C	C	F	F	F	F		c	c	c	c	c	c	c	
	180	181	C	C		X	X	E	E	E	C	C	E	E	E	c	C	C	F	F	F	F		c	C	C	C	c	F	F	
	220	221	c	c		X	\times	E	E	E	c	c	E	E	E	c	c	c	F	F	F	F		c	c	c	c	c	F	F	
	270	271	C	C		c	c	E	E	E	c	c	E	E	E	c	c	C	F	F	F	F		c	c	c	C	c	F	F	
	330	331	C	c		c	c	E	E	E	c	c	E	E	E	c	c	F	F	F	F	F		c	c	c	F	F	F	F	
	390	391	c	c		c	c	E	E	E	c	c	E	E	E	c	c	F	F	F	F	F		c	c	c	F	F	F	F	
	470	471	c	c		c	c	E	E	E	c	c	E	E	E	c	c	F	F	F	F	F		c	c	F	F	F	F	F	
	560	561	C	c		c	c	E			c	c	E	E	E	c	c	F	F	F				c	c	F	F	F	F	F	
	680	681	C	C		C	C	E			c	C	E	F	F	c	C	F	F	F				c	c	F	F	F	G	G	
	750	751	c	C		E	E	E			C	c	E	G	G	c	C	F	F	F				c	c	F	F	F	G	G	
	820	821	c	c		E	E	E			c	c	E	G	G	c	c	F	E	E				c	c	F	F	F	G	G	
	1000	102				E	E	E			c	C	E			c	C	F	E	E				c	c	F	F	F	G	G	
	1200	122				E	E				c	c	E			E	E	F	E	E				c	c	F	E	E			
	1500	152				E	E				c	c	G			E	E	F						c	c	F	F	F			
	1800	182				E	E				c	c	G			E	E	F						c	c	F	F	F			
	2200	222				E	E				E	E				E	E							c	c	E	G	G			
	2700	272				E	E				E	E				E	E							c	c	E	G	G			
	3300	332				E	E				E	E				E	E							c	c	F					
	3900	392									E	E				E	E							c	c	F					
	4700	472									E	E				E	E							c	c	G					
	5600	562									E	E				E	E							c	c						
	6800	682														F	F							c	c						
	8200	822																						E	E						
Cap (μ F)	0.010	103																						E	E						
	0.012	123																						F	F						
	0.015	153																						G	G						
	0.018	183																						G	G						
	0.022	223																													
	0.033	333																													
	0.047	473																													
	0.056	563																													
	0.068	683																													
	0.100	104																													
	age (M)		600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size			0805			1206					1210					1808								1812							
																															83

High Voltage MLC Chips

For 600V to 5000V Applications

NPO (COG) CAPACITANCE RANGE
 PREFERRED SIZES ARE SHADED

High Voltage MLC Chips

For 600V to 5000V Applications

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to $0.56 \mu \mathrm{~F}\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz$)$
Capacitance Tolerances	$\pm 10 \%$; $\pm 20 \%$; +80\%, -20\%
Dissipation Factor	2.5\% max. $\left(+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}\right)$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Characteristic	$\pm 15 \%$ (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 \& $5000 \mathrm{VDC}\left(+125^{\circ} \mathrm{C}\right)$
Insulation Resistance (+25 ${ }^{\circ} \mathrm{C}$, at 500 VDC$)$	$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Insulation Resistance (+125 ${ }^{\circ} \mathrm{C}$, at 500 VDC$)$	$10 \mathrm{~K} M \Omega$ min. or $100 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Dielectric Strength	Minimum 120\% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size			0805			1206					1210					1808								1812							
Soldering				Reflow/Wave		Reflow/Wave					Reflow Only					Reflow Only								Reflow Only							
(L) Length	cir	$\mathrm{mm}_{(\mathrm{in} .)}$	$\begin{gathered} 2.01 \pm 0.20 \\ (0.079 \pm 0.008) \end{gathered}$			$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$					$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$					$\begin{gathered} 4.57 \pm 0.25 \\ (0.180 \pm 0.010) \end{gathered}$								$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$							
M) Width		$m_{\left(\mathrm{m}_{\mathrm{m}}\right)}$	$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \\ \hline \end{gathered}$			$\begin{gathered} 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \end{gathered}$					$\begin{gathered} 2.50 \pm 0.20 \\ (0.098 \pm 0.008) \end{gathered}$					$\begin{gathered} 2.00 \pm 0.25 \\ (0.080 \pm 0.010) \end{gathered}$								$\begin{gathered} 3.20 \pm \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$							
(7) Thicknes	Ss min	$m_{\left(i n^{m}\right)}^{m m}$	$\begin{aligned} & 1.30 \\ & (0.051) \end{aligned}$			$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$					$\begin{aligned} & 1.70 \\ & (0.067) \end{aligned}$					$\begin{aligned} & 2.03 \\ & (0.080) \end{aligned}$								$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$							
(t) Terminal		min	$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$			$\begin{aligned} & 0.25(0.010) \\ & 0.75(0.030) \\ & \hline \end{aligned}$					$0.25(0.010)$$0.75(0.030)$					$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \\ & \hline \end{aligned}$								$0.25(0.010)$$1.02(0.040)$							
Voltage (M)																															
			600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 100	100	101	\times	\times	c	c	c	E	E	E	E	E	E	E	E																
	120	121	\times	\times	c	c	c	E	E	E	E	E	E	E	E																
	150	151	\times	x	c	c	c	E	E	E	E	E	E	E	E																
	180	181	x	\times	c	c	c	E	E	E	E	E	E	E	E																
	220	221	\times	x	c	c	c	E	E	E	E	E	E	E	E																
	270	271	x	x	c	c	c	E	E	E	E	E	E	E	E									E	E	E	E	E			
	330	331	\times	\times	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			
	390	391	-	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			
	470	471	x	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	E	E	
	560	561	x	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	
	680	681	\times	\times	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
	750	751	x	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
	820	821	-	-	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
	1000	102	-	\times	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
	1200	122	x	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
	1500	152	x	x	c	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	G	G	
	1800	182	x	\times		c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	G	G	
	2200	222	x	x		c	c	E	E	E	E	E	E	F	E	E	E	E	F	F	F			E	E	E	E	E	G	G	
	2700	272	x	\times		c	c	E	E		E	E	E	F	E	E	E	E	F	F				E	E	E	E	E	G	G	
	3300	332	x	x		c	c	E			E	E	E	F	E	E	E	E	F	F				E	E	E	F	F	G	G	
	3900	392	x	x		c	c	E			E	E	E	G		E	E	E	F					E	E	E	F	F	G	G	
	4700	472	x	\times		c	c	E			E	E	E	G		E	E	E	F					E	E	E	F	F	G	G	
	5600	562	x	x		c	c	E			E	E	E	G		E	E	E	F					E	E	E	G	G			
	6800	682	x	x		c	c	E			E	E	E			E	E	E	F					E	E	E	G	G			
	8200	822	\times	\times		c	c	E			E	E	E			E	E	E						E	E	E	G	G			
Cap (μ)	0.010	103	c	c		c	c	E			E	E	E			E	E	E						E	E	F	G	G			
	0.015	153	c	c		E	E	E			E	E	E			F	F	F						E	E	F	G				
	0.018	183	c	c		E	E				E	E	E			F	F	F						E	E	G					
0.022		223	c	c		E	E				E	E	E			F	F							E	E	G					
$0.027 \quad 27$						E	E				E	E				F	F							E	E	G					
0.033 33						E	E				E	E				F	F							E	E	G					
											E	E				F	F							E	E	G					
0.039 39 0.047 47 0											E	E				F	F							E	E	G					
$0.056 \quad 56$											F	F				F	F							F	F						
$0.068 \quad 683$											F	F				F	F							F	F						
$0.082 \quad 82$											F	F												F	F						
$0.100 \quad 10$											F	F												F	F						
$0.150 \quad 15$																								G	G						
$0.220 \quad 22$																								G	G						
$0.270 \quad 274$																															
$0.330 \quad 33$																															
$0.390 \quad 394$																															
$\begin{array}{ll}0.390 & 39\end{array}$																															
$0.560 \quad 56$																															
$0.680 \quad 68$																															
$0.820 \quad 824$																															
1.000 105 Votage ${ }^{\text {M }}$																															
			600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size			0805			1206					1210					1808								1812							

High Voltage MLC Chips

For 600V to 5000V Applications

X7R CAPACITANCE RANGE
 PREFERRED SIZES ARE SHADED

Case Size	1825								2220									2225									3640								
Soldering	Reflow Only								Reflow Only									Reflow Only									Reflow Only								
(L) Length $\quad \underset{\text { (in.) }}{\mathrm{mm}}$	$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \\ \hline \end{gathered}$								$\begin{gathered} 5.70 \pm 0.40 \\ (0.224 \pm 0.016) \\ \hline \end{gathered}$									$\begin{gathered} 5.72 \pm 0.25 \\ (0.225 \pm 0.010) \\ \hline \end{gathered}$									$\begin{gathered} 9.14 \pm 0.25 \\ (0.360 \pm 0.010) \\ \hline \end{gathered}$								
(M) Width $\quad \underset{(i n t}{m m}$	$\begin{gathered} 6.40 \pm 0.30 \\ (0.252 \pm 0.012) \\ \hline \end{gathered}$								$\begin{gathered} 5.00 \pm 0.40 \\ (0.197 \pm 0.016) \end{gathered}$									$\begin{aligned} 6.35 & \pm 0.25 \\ (0.250 & \pm 0.010) \end{aligned}$									$\begin{gathered} 10.2 \pm 0.25 \\ (0.400 \pm 0.010) \end{gathered}$								
(7) Thickness $\begin{array}{ll}\mathrm{mm} \\ \text { (in.) }\end{array}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$								$\begin{gathered} 3.30 \\ (0.130) \\ \hline \end{gathered}$									$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$									$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$								
(t) Terminal $\min _{\max }$	$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \\ & \hline \end{aligned}$								$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \\ & \hline \end{aligned}$									$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \\ & \hline \end{aligned}$									$\begin{aligned} & 0.76(0.030) \\ & 1.52(0.060) \end{aligned}$								
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF) 100 101																																			
$120 \quad 121$																																			
$150 \quad 151$																																			
$180 \quad 181$																																			
$220 \quad 221$																																			
$270 \quad 271$																																			
$330 \quad 331$																																			
390391																																			
$470 \quad 471$																																			
$560 \quad 561$																																			
680681																																			
$750 \quad 751$																																			
$820 \quad 821$																																			
$1000 \quad 102$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$1200 \quad 122$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$1500 \quad 152$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$1800 \quad 182$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$2200 \quad 222$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$2700 \quad 272$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
$3300 \quad 332$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
$4700 \quad 472$	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
5600562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
$8200 \quad 822$	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
Cap (μ F) $0.010 \quad 103$	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
$0.015 \quad 153$	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G		
$0.018 \quad 183$	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		
$0.022 \quad 223$	F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G			
$0.027 \quad 273$	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G				
$0.033 \quad 333$	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
$0.039 \quad 393$	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
$0.047 \quad 473$	F	F	F	P					F	F	F	G						F	F	F	G						G	G	G	G					
$0.056 \quad 563$	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
$0.068 \quad 683$	F	F	G						F	F	G							F	F	F	G						G	G	G	G					
$0.082 \quad 823$	F	F	G						F	F	G							F	F	G							G	G							
$0.100 \quad 104$	F	F	G						F	F	G							F	F	G							G	G							
$0.150 \quad 154$	F	F							F	F	G							F	F	G							G	G							
$0.220 \quad 224$	F	F							F	F	G							F	F								G	G							
$0.270 \quad 274$	F	F							F	F								F	F								G	G							
$0.330 \quad 334$	F	F							F	F								F	F								G	G							
$0.390 \quad 394$	F	F							F	F								F	F								G	G							
$0.470 \quad 474$	F	F							F	F								F	F								G	G							
$0.560 \quad 564$	G	G							G	G								F	F																
$0.680 \quad 684$									G	G								G	G																
$0.820 \quad 824$																		G	G																
$1.000 \quad 105$ Voltage (M)																																			
	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Size	1825												2220									2225									3640				

Letter	A	C	E	F	G	P	X
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0120)	(0.037)

High Voltage MLC Chips Tin/Lead Termination "B"

For 600V to 5000V Applications

NEW 630V RANGE

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5\% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this " B " termination.
Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed $4^{\circ} \mathrm{C}$ per second. The preheat temperature must be within $50^{\circ} \mathrm{C}$ of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

Not RoHS Compliant

HOW TO ORDER

LD08	$\stackrel{\mathbf{A}}{\top}$	$\underset{\sim}{\mathbf{A}}$	$\underline{271}$	$\underset{\top}{\mathbf{K}}$	$\underset{T}{A}$	B	1	A
$\begin{aligned} & \text { AVX } \\ & \text { Style } \end{aligned}$	Voltage $600 \mathrm{~V} / 630 \mathrm{~V}=\mathrm{C}$	Temperature Coefficient	Capacitance Code (2 significant digits	Capacitance Tolerance	Test Level	$\begin{gathered} \text { Termination } \\ \mathrm{B}=5 \% \mathrm{Min} \mathrm{~Pb} \end{gathered}$	Packaging $1=7{ }^{\prime \prime}$ Reel	Special Code A = Standard
LD05-0805	$1000 \mathrm{~V}=\mathrm{A}$	COG = A	+ no. of zeros)	COG: $J= \pm 5 \%$	A = Standard		$3=13$ "Reel	
LD06-1206	$1500 \mathrm{~V}=\mathrm{S}$	X7R $=\mathrm{C}$	Examples:	$\mathrm{K}= \pm 10 \%$			9 = Bulk	
LD10-1210	$2000 \mathrm{~V}=\mathrm{G}$		$10 \mathrm{pF}=100$	$\mathrm{M}= \pm 20 \%$				
LD08-1808	$2500 \mathrm{~V}=\mathrm{W}$		$100 \mathrm{pF}=101$	X7R: $\mathrm{K}= \pm 10 \%$				
LD12-1812	$3000 \mathrm{~V}=\mathrm{H}$		$1,000 \mathrm{pF}=102$	$\mathrm{M}= \pm 20 \%$				
LD13-1825	$4000 \mathrm{~V}=\mathrm{J}$		$22,000 \mathrm{pF}=223$	$Z=+80 \%,-20 \%$				
LD20-2220	$5000 \mathrm{~V}=\mathrm{K}$		$220,000 \mathrm{pF}=224$					
LD14-2225			$1 \mu \mathrm{~F}=105$					
$\underset{* * *}{\text { LD } 40-3640}$								

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS
millimeters (inches)

SIZE	LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length	$\begin{gathered} 2.01 \pm 0.20 \\ (0.079 \pm 0.008) \end{gathered}$	$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \\ \hline \end{array}$	$\begin{gathered} 4.57 \pm 0.25 \\ (0.180 \pm 0.010) \end{gathered}$	$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$	$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$	$\begin{gathered} 5.70 \pm 0.40 \\ (0.224 \pm 0.016) \end{gathered}$	$\begin{gathered} 5.72 \pm 0.25 \\ (0.225 \pm 0.010) \end{gathered}$	$\begin{array}{\|c\|} \hline 9.14 \pm 0.25 \\ (0.360 \pm 0.010) \\ \hline \end{array}$
(W) Width	$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \end{gathered}$	$\begin{array}{c\|} \hline 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \\ \hline \end{array}$	$\begin{gathered} 2.50 \pm 0.20 \\ (0.098 \pm 0.008) \end{gathered}$	$\begin{gathered} 2.03 \pm 0.25 \\ (0.080 \pm 0.010) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \\ \hline \end{array}$	$\begin{gathered} 6.40 \pm 0.30 \\ (0.252 \pm 0.012) \end{gathered}$	$\begin{gathered} 5.00 \pm 0.40 \\ (0.197 \pm 0.016) \end{gathered}$	$\begin{array}{\|c\|} \hline 6.35 \pm 0.25 \\ (0.250 \pm 0.010) \\ \hline \end{array}$	$\begin{gathered} 10.2 \pm 0.25 \\ (0.400 \pm 0.010) \end{gathered}$
(T) Thickness Max.	$\begin{gathered} 1.30 \\ (0.051) \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.70 \\ (0.067) \end{gathered}$	$\begin{gathered} \hline 2.03 \\ (0.080) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 3.30 \\ (0.130) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$
(t) terminal min. max.	$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$	$\begin{aligned} & 0.25(0.010) \\ & 0.75(0.030) \end{aligned}$	$\begin{aligned} & 0.25(0.010) \\ & 0.75(0.030) \end{aligned}$	$\begin{aligned} & 0.25(0.010) \\ & 1.02(0.040) \end{aligned}$	$\begin{aligned} & 0.76(0.030) \\ & 1.52(0.060) \end{aligned}$				

[^2]
High Voltage MLC Chips Tin/Lead Termination "B"

For 600V to 5000V Applications

COG Dielectric

Performance Characteristics

Capacitance Range				10 pF to $0.047 \mu \mathrm{~F}$ $\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz , for $\leq 1000 \mathrm{pF}$ use 1 MHz)					
Capacitance Tolerances				$\pm 5 \%, \pm 10 \%, \pm 20 \%$					
Dissipation Factor				0.1% max. ($+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}$, for $\leq 1000 \mathrm{pF}$ use 1 MHz)					
Operating Temperature Range				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					
Temperature Characteristic				$0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (0 VDC)					
Voltage Ratings				600, 630, 1000, 1500, 2000, 2500, 3000, 4000 \& 5000 VDC ($+125^{\circ} \mathrm{C}$)					
Insulation Resistance ($+25^{\circ} \mathrm{C}$, at 500 VDC)				$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less					
Insulation Resistance ($+125^{\circ} \mathrm{C}$, at 500 VDC)				$10 \mathrm{~K} \mathrm{M} \Omega$ min. or $100 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less					
Dielectric Strength				Minimum 120\% rated voltage for 5 seconds at 50 mA max. current					
HIGH VOLTAGE COG CAPACITANCE VALUES									
VOLTAGE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630 min. ${ }_{\text {max. }}$.	$\begin{aligned} & \text { 10pF } \\ & 330 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1200 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 2700 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 3300 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 5600 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.012 \mathrm{FF} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.012 \mathrm{pF} \end{aligned}$	1000 pF $0.018 \mathrm{\mu F}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.047 \mathrm{pF} \end{aligned}$
1000 min .	10pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1500 min.	180pF	$\frac{560 \mathrm{pF}}{10 \mathrm{pF}}$	$\frac{1500 \mathrm{pF}}{10 \mathrm{pF}}$	$\frac{2200 \mathrm{pF}}{10 \mathrm{pF}}$	$\frac{3300 \mathrm{pF}}{10 \mathrm{pF}}$	$\frac{8200 ~ p F}{100 \mathrm{pF}}$	$\frac{0.010 \mu \mathrm{~F}}{100 \mathrm{pF}}$	$\frac{0.010 ~}{100 \mathrm{pF}}$	$\frac{0.022 ~}{100} \mathrm{pF}$
1500 max.	-	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	$0.010 \mu \mathrm{~F}$
$2000 \min _{\text {max }}$	-	10 pF 120 pF	${ }^{10} \mathrm{pF}$	10 pF 330 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2500 min.	-		270 pF	10 pF	1000 pF	$\frac{1800 \mathrm{pF}}{10 \mathrm{pF}}$	$\frac{2200 ~ p F}{100}$	2700 pF	6800 pF
2500 max.		-	-	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
$3000 \min ^{\text {max }}$	-	-	-	10 pF	${ }^{10} \mathrm{pF}$	10 pF	10 pF	10 pF	100 pF
	-	-	-	10 pF	100 pF				
4000 max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
$5000 \min _{\text {max. }}$	-	-	-	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 220 \mathrm{pF} \end{array}$	$\begin{aligned} & 10 \mathrm{pF} \\ & 270 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 10 \mathrm{pF} \\ & 820 \mathrm{pF} \end{aligned}$

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to $0.56 \mu \mathrm{~F}\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz$)$
Capacitance Tolerances	$\pm 10 \% ; \pm 20 \% ;+80 \%,-20 \%$
Dissipation Factor	$2.5 \% \mathrm{max} .\left(+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}\right)$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Characteristic	$\pm 15 \%(0 \mathrm{VDC})$
Voltage Ratings	$600,630,1000,1500,2000,2500,3000,4000 \& 5000 \mathrm{VDC}\left(+125^{\circ} \mathrm{C}\right)$
Insulation Resistance $\left(+25^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{M} \Omega-\mu \mathrm{FF}$ min., whichever is less
Insulation Resistance $\left(+125^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$10 \mathrm{~K} \mathrm{M} \mathrm{\Omega} \mathrm{min} .\mathrm{or} 100 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTAGE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630 min.	$\begin{gathered} \text { 100pF } \\ 6800 \mathrm{pF} \end{gathered}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.022 \mathrm{\mu F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.056 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.068 \mu \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.120 \mathrm{\mu F} \end{aligned}$	$\begin{aligned} & 0.010 \mu \mathrm{~F} \\ & 0.270 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.010 \mu \mathrm{~F} \\ & 0.270 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.010 \mu F \\ & 0.330 \mu F \end{aligned}$	$\begin{aligned} & 0.010 \mu F \\ & 0.560 \mu \mathrm{~F} \end{aligned}$
1000 min.	100pF	100 pF	1000 pF	$0.010 \mu \mathrm{~F}$					
1000 max.	1500pF	6800 pF	$0.015 \mu \mathrm{~F}$	$0.018 \mu \mathrm{~F}$	$0.039 \mu \mathrm{~F}$	$0.100 \mu \mathrm{~F}$	$0.120 \mu \mathrm{~F}$	$0.150 \mu \mathrm{~F}$	$0.220 \mu \mathrm{~F}$
1500 min.	-	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500 max.	-	2700 pF	5600 pF	6800 pF	$0.015 \mu \mathrm{~F}$	$0.056 \mu \mathrm{~F}$	$0.056 \mu \mathrm{~F}$	$0.068 \mu \mathrm{~F}$	$0.100 \mu \mathrm{~F}$
2000 min.	-	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000 max.	-	1500 pF	3300 pF	3300 pF	8200 pF	$0.022 \mu \mathrm{~F}$	$0.027 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$	$0.027 \mu \mathrm{~F}$
$2500 \min _{\text {max. }}$	-	-	-	10 pF 2200 pF	$\begin{gathered} 10 \mathrm{pF} \\ 5600 \mathrm{pF} \end{gathered}$	¢ 100 pF	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.018 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.022 \mu \mathrm{~F} \end{aligned}$	1000 pF $0.022 \mathrm{\mu F}$
3000 min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000 max.	-	-	-	1800 pF	3900 pF	$0.010 \mu \mathrm{~F}$	$0.012 \mu \mathrm{~F}$	$0.015 \mu \mathrm{~F}$	$0.018 \mu \mathrm{~F}$
$4000 \min _{\text {max }}$	-	-	-	-	-	-	-	-	100 pF
5000 min.	-	-	-	-	-	-	-	-	100 pF
5000 max.	-	-	-	-	-	-	-	-	3300 pF

High Voltage MLC Chips FLEXITERM ${ }^{\circledR}$
 /AVMK
 For 600V to 3000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.
To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM ${ }^{\circledR}$ range of low voltage parts, AVX is delighted to offer a FLEXITERM ${ }^{\circledR}$ high voltage range of capacitors, FLEXITERM ${ }^{\circledR}$.
The FLEXITERM ${ }^{\circledR}$ layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

$\underline{1808}$	A	C	272	$\underline{\mathbf{K}}$	$\underset{\top}{\mathbf{A}}$	\underline{Z}	1	$\stackrel{\mathbf{A}}{\top}$
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination*	Packaging	Special
Style 0805	$\begin{aligned} 600 \mathrm{~V} / 630 \mathrm{~V} & =\mathrm{C} \\ 1000 \mathrm{~V} & =\mathrm{A}\end{aligned}$	Coefficient COG $=\mathrm{A}$	(2 significant digits + no. of zeros)	Tolerance COG: $J= \pm 5 \%$		$\begin{gathered} \mathrm{Z}=\mathrm{FLEXITERM} \circledast \\ 100 \% \text { Tin } \end{gathered}$	$\begin{aligned} & 1=7 " \text { Reel } \\ & 3=13^{\prime \prime} \text { Reel } \end{aligned}$	Code A = Standard
1206	$1500 \mathrm{~V}=\mathrm{S}$	$\mathrm{X} 7 \mathrm{R}=\mathrm{C}$	Examples:	$K= \pm 10 \%$		(RoHS Compliant)	9 = Bulk	
1210	$2000 \mathrm{~V}=\mathrm{G}$		$10 \mathrm{pF}=100$	$\mathrm{M}= \pm 20 \%$				
1808	$2500 \mathrm{~V}=\mathrm{W}$		$100 \mathrm{pF}=101$	X7R: $\mathrm{K}= \pm 10 \%$				
1812	$3000 \mathrm{~V}=\mathrm{H}$		$1,000 \mathrm{pF}=102$	$\mathrm{M}= \pm 20 \%$				
1825			$22,000 \mathrm{pF}=223$	$Z=+80 \%$,				
2220			$220,000 \mathrm{pF}=224$	-20\%				
2225			$1 \mu \mathrm{~F}=105$					

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS
millimeters (inches)

SIZE	$\mathbf{0 8 0 5}$	$\mathbf{1 2 0 6}$	$\mathbf{1 2 1 0}^{\boldsymbol{*}}$	$\mathbf{1 8 0 8}^{\boldsymbol{*}}$	$\mathbf{1 8 1 2}^{\boldsymbol{*}}$	$\mathbf{1 8 2 5}^{\boldsymbol{*}}$	$\mathbf{2 2 2 0}^{\boldsymbol{*}}$	$\mathbf{2 2 2 5}^{\boldsymbol{*}}$
(L) Length	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.57 ± 0.25	4.50 ± 0.30	4.50 ± 0.30	5.7 ± 0.40	5.72 ± 0.25
	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.180 ± 0.010)	(0.177 ± 0.012)	(0.177 ± 0.012)	(0.224 ± 0.016)	(0.225 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	2.03 ± 0.25	3.20 ± 0.20	6.40 ± 0.30	5.0 ± 0.40	6.35 ± 0.25
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.080 ± 0.010)	(0.126 ± 0.008)	(0.252 ± 0.012)	(0.197 ± 0.016)	(0.250 ± 0.010)
(T) Thickness	1.30	1.52	1.70	2.03	2.54	2.54	3.30	2.54
Max.	(0.051)	(0.060)	(0.067)	(0.080)	(0.100)	(0.100)	(0.130)	(0.100)
(t) terminal min.	0.50 ± 0.25	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$	$0.25(0.010)$
(0.020)								
max.	(0.020 ± 0.010)	$0.75(0.030)$	$0.75(0.030)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$	$1.02(0.040)$

[^3]
High Voltage MLC Chips FLEXITERM ${ }^{\circledR}$
 AVVK
 For 600V to 5000V Applications

COG Dielectric

Performance Characteristics

Capacitance Range	10 pF to $0.018 \mu \mathrm{~F}$ $\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz , for $\leq 1000 \mathrm{pF}$ use 1 MHz)
Capacitance Tolerances	$\pm 5 \%, \pm 10 \%, \pm 20 \%$
Dissipation Factor	0.1% max. ($+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}$, for $\leq 1000 \mathrm{pF}$ use 1 MHz)
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Characteristic	$0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 \& 5000 VDC ($+125^{\circ} \mathrm{C}$)
Insulation Resistance ($+25^{\circ} \mathrm{C}$, at 500 VDC)	$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Insulation Resistance ($+125^{\circ} \mathrm{C}$, at 500 VDC)	$10 \mathrm{~K} \mathrm{M} \Omega$ min. or $100 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Dielectric Strength	Minimum 120\% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTAGE	0805	1206	1210	1808	1812	1825	2220	2225
600/630 $\begin{aligned} & \text { min. } \\ & \text { max. }\end{aligned}$	$\begin{array}{r} 10 \mathrm{pF} \\ 330 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1200 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 2700 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 3300 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 5600 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.012 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.012 \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.018 \mu \mathrm{HF} \end{aligned}$
$1000 \begin{aligned} & \min . \\ & \\ & \text { max. } \end{aligned}$	$\begin{array}{r} 10 \mathrm{pF} \\ 180 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 560 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1500 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 2200 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 3300 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 8200 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.010 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.010 \mu \mathrm{~F} \end{aligned}$
$1500 \min _{\max .} .$	-	$\begin{array}{r} 10 \mathrm{pF} \\ 270 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 680 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 820 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1800 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 4700 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 4700 \mathrm{pF} \end{array}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 5600 \mathrm{pF} \end{aligned}$
$2000 \min _{\max .}$	-	$\begin{array}{r} 10 \mathrm{pF} \\ 120 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 270 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 330 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1000 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 1800 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 2200 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 2700 \mathrm{pF} \\ \hline \end{array}$
$2500 \min _{\max .}$	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 180 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 470 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1200 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 1500 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 1800 \mathrm{pF} \end{array}$
$3000 \min _{\max .}$	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 120 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 330 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 820 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1000 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 1200 \mathrm{pF} \end{array}$
$4000 \begin{aligned} & \text { min. } \\ & \text { max. } \end{aligned}$	-	-	-	$\begin{aligned} & 10 \mathrm{pF} \\ & 47 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \mathrm{pF} \\ 150 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 330 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 470 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 560 \mathrm{pF} \\ \hline \end{array}$
$5000 \begin{aligned} & \min . \\ & \\ & \text { max. } \end{aligned}$	-	-	-	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 220 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 270 \mathrm{pF} \\ \hline \end{array}$

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to $0.33 \mu \mathrm{~F}\left(25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}\right.$ at 1 kHz$)$
Capacitance Tolerances	$\pm 10 \% ; \pm 20 \% ;+80 \%,-20 \%$
Dissipation Factor	2.5% max. $\left(+25^{\circ} \mathrm{C}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{kHz}\right)$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Characteristic	$\pm 15 \%(0 \mathrm{VDC})$
Voltage Ratings	$600,630,1000,1500,2000,2500,3000,4000 \& 5000 \mathrm{VDC}\left(+125^{\circ} \mathrm{C}\right)$
Insulation Resistance $\left(+25^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$100 \mathrm{~K} \mathrm{M} \Omega$ min. or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Insulation Resistance $\left(+125^{\circ} \mathrm{C}\right.$, at 500 VDC$)$	$10 \mathrm{~K} \mathrm{M} \Omega$ min. or $100 \mathrm{M} \Omega-\mu \mathrm{F}$ min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTAGE	0805	1206	1210	1808	1812	1825	2220	2225
600/630 $\begin{gathered}\text { min. } \\ \text { max. }\end{gathered}$	$\begin{array}{r} 100 \mathrm{pF} \\ 6800 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.022 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.056 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.068 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.120 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.010 \mu \mathrm{~F} \\ & 0.270 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.010 \mu \mathrm{~F} \\ & 0.270 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.010 \mu \mathrm{~F} \\ & 0.330 \mu \mathrm{~F} \end{aligned}$
$1000 \begin{gathered} \text { min. } \\ \text { max. } \end{gathered}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 1500 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 100 \mathrm{pF} \\ 6800 \mathrm{pF} \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.015 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.018 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.039 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.100 \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.120 \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.150 \mu \mathrm{~F} \\ & \hline \end{aligned}$
$1500 \begin{gathered} \min . \\ \text { max. } \end{gathered}$	-	$\begin{array}{r} 100 \mathrm{pF} \\ 2700 \mathrm{pF} \\ \hline \end{array}$	$\begin{gathered} 100 \mathrm{pF} \\ 5600 \mathrm{pF} \end{gathered}$	$\begin{array}{r} 100 \mathrm{pF} \\ 6800 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.015 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.056 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.056 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.068 \mathrm{\mu F} \end{aligned}$
$2000 \begin{aligned} & \min _{\max .} . \\ & \end{aligned}$	-	$\begin{array}{r} 10 \mathrm{pF} \\ 1500 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 3300 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 3300 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 8200 \mathrm{pF} \end{array}$	$\begin{array}{r} 100 \mathrm{pF} \\ 0.022 \mu \mathrm{~F} \end{array}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.027 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 0.033 \mu \mathrm{~F} \end{aligned}$
$2500 \min _{\max .} .$	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 2200 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 5600 \mathrm{pF} \end{array}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.015 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.018 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.022 \mu \mathrm{~F} \end{aligned}$
$3000 \min _{\max .}$	-	-	-	$\begin{array}{r} 10 \mathrm{pF} \\ 1800 \mathrm{pF} \end{array}$	$\begin{array}{r} 10 \mathrm{pF} \\ 3900 \mathrm{pF} \end{array}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.010 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 100 \mathrm{pF} \\ & 0.012 \mu \mathrm{~F} \end{aligned}$	$\begin{array}{r} 100 \mathrm{pF} \\ 0.015 \mu \mathrm{~F} \end{array}$

High Voltage MLC Chip Capacitors For 600V to 3000V Automotive Applications - AEC-Q200

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cars). AVX offer high voltage ceramic capacitors qualified according to AEC-Q200 standard.
High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling / dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.
Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed $4^{\circ} \mathrm{C}$ per second. The preheat temperature must be within $50^{\circ} \mathrm{C}$ of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.
To improve mechanical and thermal resistance, $A V X$ recommend to use flexible terminations system - FLEXITERM ${ }^{\circledR}$.

HOW TO ORDER

1210	C	C	223	K	4	T	1	A
AVX	Voltage	Dielectric	Capacitance Code	Capacitance	Failure Rate	Termination	Packaging	Special
Style	$\mathrm{C}=630 \mathrm{~V}$	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	(2 significant digits	Tolerance	4 = Automotive	T = Plated Ni/Sn	$1=7{ }^{\prime \prime}$ Reel	Code
1206	$A=1000 \mathrm{~V}$		+ no. of zeros)	$J= \pm 5 \%$		$\mathrm{Z}=$ FLEXITERM ${ }^{\circledR}$	$3=13$ "Reel	A = Standard
1210	$S=1500 \mathrm{~V}$		e.g. $103=10 \mathrm{nF}$	$K= \pm 10 \%$			9 = Bulk	
1808	$\mathrm{G}=2000 \mathrm{~V}$		$(223=22 n F)$	$M= \pm 20 \%$				
1812	$W=2500 \mathrm{~V}$							
2220	$\mathrm{H}=3000 \mathrm{~V}$				X	nstandard case	Contact fact	or details.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations.

CHIP DIMENSIONS DESCRIPTION (See capacitance range chart on page 92)

$$
\begin{aligned}
\mathrm{L} & =\text { Length } \\
\mathrm{W} & =\text { Width } \\
\mathrm{T} & =\text { Thickness } \\
\mathrm{t} & =\text { Terminal }
\end{aligned}
$$

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber
Capacitance Dissipation Factor Capacitance Tolerance	$\begin{gathered} \text { within specified tolerance } \\ 2.5 \% \text { max. } \\ \pm 5 \%(\mathrm{~J}), \pm 10 \%(\mathrm{~K}), \pm 20 \%(\mathrm{M}) \\ \hline \end{gathered}$	Freq.: $1 \mathrm{kHz} \pm 10 \%$ Voltage: $1.0 \mathrm{Vrm} \mathrm{s} \pm 0.2 \mathrm{Vrms}$ $\mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{V}=0 \mathrm{Vdc}$
Temperature Characteristics	X7R $= \pm 15 \%$	$\mathrm{Vdc}=0 \mathrm{~V}, \mathrm{~T}=\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Insulation Resistance	100G Ω min. or $1000 \mathrm{M} \Omega \bullet \mu \mathrm{F}$ min. (whichever is less) $10 G \Omega$ min. or $100 \mathrm{M} \Omega \bullet \mu \mathrm{F}$ min. (whichever is less)	$\begin{gathered} \mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{~V}=500 \mathrm{Vdc} \\ \mathrm{~T}=+125^{\circ} \mathrm{C}, \mathrm{~V}=500 \mathrm{Vdc} \\ (\mathrm{t} \geq 120 \mathrm{sec}, \mathrm{I} \leq 50 \mathrm{~mA}) \end{gathered}$
Dielectric Strength	No breakdown or visual defect	120% of rated voltage $\mathrm{t} \leq 5 \mathrm{sec}, \mathrm{I} \leq 50 \mathrm{~mA}$

High Voltage MLC Chip Capacitors
 For 600V to 3000V Automotive Applications - AEC-Q200

X7R CAPACITANCE RANGE
PREFERRED SIZES ARE SHADED

NOTE: Contact factory for non-specified capacitance values

MIL-PRF-55681/Chips

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Example

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:
$\mathrm{BP}=0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ without voltage; $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with rated voltage from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$B X= \pm 15 \%$ without voltage; $+15-25 \%$ with rated voltage from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., $101=100 \mathrm{pF}$
Rated Voltage: $A=50 \mathrm{~V}, \mathrm{~B}=100 \mathrm{~V}$
Capacitance Tolerance: $\mathrm{J} \pm 5 \%, \mathrm{~K} \pm 10 \%, \mathrm{M} \pm 20 \%$

Termination Finish:

$\mathrm{M}=$ Palladium Silver
N = Silver Nickel Gold
S = Solder-coated
$Y=100 \%$ Tin

$$
\begin{aligned}
\mathrm{U}= & \text { Base Metallization/Barrier } \\
& \text { Metal/Solder Coated } \\
\mathrm{W}= & \text { Base Metallization/Barrier } \\
& \text { Metal/Tinned (Tin or Tin/ } \\
& \text { Lead Alloy) }
\end{aligned}
$$

*Solder shall have a melting point of $200^{\circ} \mathrm{C}$ or less.
Failure Rate Level: $\mathrm{M}=1.0 \%, \mathrm{P}=.1 \%, \mathrm{R}=.01 \%$,

$$
S=.001 \%
$$

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per MIL-PRF-55681	AVX Style	Length (L)	Width (W)	Thickness (T)		D		Termination Band (t)	
				Min.	Max.	Min.	Max.	Min.	Max.
CDR01	0805	$.080 \pm .015$. $050 \pm .015$. 022	. 055	. 030	-	. 010	-
CDR02	1805	$.180 \pm .015$	$.050 \pm .015$. 022	. 055	-	-	. 010	. 030
CDR03	1808	$.180 \pm .015$	$.080 \pm .018$. 022	. 080	-	-	. 010	. 030
CDR04	1812	$.180 \pm .015$	$.125 \pm .015$. 022	. 080	-	-	. 010	. 030
CDR05	1825	$.180_{-.015}^{+.020}$. $250+.020$. 020	. 080	-	-	. 010	. 030
CDR06	2225	$.225 \pm .020$	$.250 \pm .020$. 020	. 080	-	-	. 010	. 030

[^4]
CDR01 thru CDR06 to MIL-PRF-55681

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltagetemperature limits	WVDC
AVX Style 0805/CDR01				
CDR01BP100B---	10	J,K	BP	100
CDR01BP120B---	12	J	BP	100
CDR01BP150B---	15	J,K	BP	100
CDR01BP180B---	18	J	BP	100
CDR01BP220B---	22	J,K	BP	100
CDR01BP270B---	27	J	BP	100
CDR01BP330B---	33	J,K	BP	100
CDR01BP390B---	39	J	BP	100
CDR01BP470B---	47	J,K	BP	100
CDR01BP560B---	56	J	BP	100
CDR01BP680B---	68	J,K	BP	100
CDR01BP820B---	82	J	BP	100
CDR01BP101B---	100	J,K	BP	100
CDR01B--121B---	120	J,K	BP,BX	100
CDR01B--151B---	150	J,K	BP,BX	100
CDR01B--181B---	180	J,K	BP,BX	100
CDR01BX221B---	220	K, M	BX	100
CDR01BX271B---	270	K	BX	100
CDR01BX331B---	330	K, M	BX	100
CDR01BX391B---	390	K	BX	100
CDR01BX471B---	470	K,M	BX	100
CDR01BX561B---	560	K	BX	100
CDR01BX681B---	680	K, M	BX	100
CDR01BX821B---	820	K	BX	100
CDR01BX102B---	1000	K, M	BX	100
CDR01BX122B---	1200	K	BX	100
CDR01BX152B---	1500	K, M	BX	100
CDR01BX182B---	1800	K	BX	100
CDR01BX222B---	2200	K, M	BX	100
CDR01BX272B---	2700	K	BX	100
CDR01BX332B---	3300	K, M	BX	100
CDR01BX392A---	3900	K	BX	50
CDR01BX472A---	4700	K,M	BX	50
AVX Style 1805/CDR02				
CDR02BP221B---	220	J,K	BP	100
CDR02BP271B---	270	J	BP	100
CDR02BX392B---	3900	K	BX	100
CDR02BX472B---	4700	K, M	BX	100
CDR02BX562B---	5600	K	BX	100
CDR02BX682B---	6800	K, M	BX	100
CDR02BX822B---	8200	K	BX	100
CDR02BX103B---	10,000	K, M	BX	100
CDR02BX123A---	12,000	K	BX	50
CDR02BX153A---	15,000	K, M	BX	50
CDR02BX183A---	18,000	K	BX	50
CDR02BX223A---	22,000	K, M	BX	50

$\begin{gathered} \text { Military } \\ \text { Type } \\ \text { Designation } \end{gathered}$	Capacitance in pF	Capacitance tolerance	Rated temperature and voltagetemperature limits	WVDC
AVX Style 1808/CDR03				
CDR03BP331B---	330	J,K	BP	100
CDR03BP391B---	390	J	BP	100
CDR03BP471B---	470	J,K	BP	100
CDR03BP561B---	560	J	BP	100
CDR03BP681B---	680	J,K	BP	100
CDR03BP821B--	820	J	BP	100
CDR03BP102B---	1000	J,K	BP	100
CDR03BX123B--	12,000	K	BX	100
CDR03BX153B---	15,000	K, M	BX	100
CDR03BX183B---	18,000	K	BX	100
CDR03BX223B---	22,000	K, M	BX	100
CDR03BX273B---	27,000	K	BX	100
CDR03BX333B---	33,000	K, M	BX	100
CDR03BX393A---	39,000	K	BX	50
CDR03BX473A---	47,000	K, M	BX	50
CDR03BX563A---	56,000	K	BX	50
CDR03BX683A---	68,000	K, M	BX	50

AVX Style 1812/CDR04

CDR04BP122B---	1200	J	BP	100
CDR04BP152B---	1500	J,K	BP	100
CDR04BP182B---	1800	J	BP	100
CDR04BP222B---	2200	J,K	BP	100
CDR04BP272B---	2700	J	BP	100
CDR04BP332B---	3300	J,K	BP	100
CDR04BX393B---	39,000	K	BX	100
CDR04BX473B---	47,000	K,M	BX	100
CDR04BX563B---	56,000	K	BX	100
CDR04BX823A---	82,000	K	BX	50
CDR04BX104A---	100,000	K,M	BX	50
CDR04BX124A---	120,000	K	BX	50
CDR04BX154A---	150,000	K,M	BX	50
CDR04BX184A---	180,000	K	BX	50

AVX Style 1825/CDR05

CDR05BP392B---	3900	$\mathrm{~J}, \mathrm{~K}$	BP	100
CDR05BP472B---	4700	$\mathrm{~J}, \mathrm{~K}$	BP	100
CDR05BP562B---	5600	K	K	BP
CDR05BX683B---	68,000	$\mathrm{~K}, \mathrm{M}$	BX	100
CDR05BX823B---	82,000	K	BX	100
CDR05BX104B---	100,000	$\mathrm{~K}, \mathrm{M}$	BX	100
CDR05BX124B---	120,000	K	BX	100
CDR05BX154B---	150,000	$\mathrm{~K}, \mathrm{M}$	BX	100
CDR05BX224A---	220,000	$\mathrm{~K}, \mathrm{M}$	BX	50
CDR05BX274A---	270,000	K	BX	50
CDR05BX334A---	330,000	$\mathrm{~K}, \mathrm{M}$	BX	50

— Add appropriate failure rate
Add appropriate termination finish
_ Capacitance Tolerance

AVX Style 2225/CDR06

CDR06BP682B---	6800	J, K	BP	100
CDR06BP822B---	8200	J, K	BP	100
CDR06BP103B---	10,000	J, K	BP	100
CDR06BX394A---	390,000	K	BX	50
CDR06BX474A---	470,000	K,M	BX	50

- Add appropriate failure rate
- Add appropriate termination finish
- Capacitance Tolerance

MILITARY DESIGNATION PER MIL-PRF-55681

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage Temperature Limits:

$\mathrm{BP}=0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ without voltage; $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with rated voltage from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$B X= \pm 15 \%$ without voltage; $+15-25 \%$ with rated voltage from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., $101=100 \mathrm{pF}$
Rated Voltage: $A=50 \mathrm{~V}, \mathrm{~B}=100 \mathrm{~V}$
Capacitance Tolerance: B $\pm .10 \mathrm{pF}, \mathrm{C} \pm .25 \mathrm{pF}, \mathrm{D} \pm .5$

$$
\begin{aligned}
& \mathrm{pF}, \mathrm{~F} \pm 1 \%, \mathrm{~J} \pm 5 \%, \mathrm{~K} \pm 10 \%, \\
& \mathrm{M} \pm 20 \%
\end{aligned}
$$

Termination Finish:

M = Palladium Silver
N = Silver Nickel Gold
S = Solder-coated
$Y=100 \%$ Tin

$$
\begin{aligned}
& U= \text { Base Metallization/Barrier } \\
& \text { Metal/Solder Coated* } \\
& \mathrm{W}= \text { Base Metallization/Barrier } \\
& \text { Metal/Tinned (Tin or Tin/ } \\
& \text { Lead Alloy) }
\end{aligned}
$$

*Solder shall have a melting point of $200^{\circ} \mathrm{C}$ or less.
Failure Rate Level: $\mathrm{M}=1.0 \%, \mathrm{P}=.1 \%, \mathrm{R}=.01 \%$,

$$
S=.001 \%
$$

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681 (Metric Sizes)	AVX Style	Length (L) $(\mathbf{m m})$	Width (W) $\mathbf{(m m)}$	Thickness (T)	D		Termination Band (t)	
CDR31	0805	2.00	1.25	1.3	.50	.70	.30	
CDR32	1206	3.20	1.60	1.3	-	.70	.30	
CDR33	1210	3.20	2.50	1.5	-	.70	.30	
CDR34	1812	4.50	3.20	1.5	-	.70	.30	
CDR35	1825	4.50	6.40	1.5	-	.70	.30	

CDR31 to MIL-PRF-55681/7

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltagetemperature limits	WVDC
AVX Style 0805/CDR31 (BP)				
CDR31BP1R0B---	1.0	B, C	BP	100
CDR31BP1R1B---	1.1	B,C	BP	100
CDR31BP1R2B---	1.2	B,C	BP	100
CDR31BP1R3B---	1.3	B,C	BP	100
CDR31BP1R5B---	1.5	B,C	BP	100
CDR31BP1R6B---	1.6	B,C	BP	100
CDR31BP1R8B---	1.8	B,C	BP	100
CDR31BP2R0B---	2.0	B,C	BP	100
CDR31BP2R2B---	2.2	B,C	BP	100
CDR31BP2R4B---	2.4	B,C	BP	100
CDR31BP2R7B---	2.7	B,C,D	BP	100
CDR31BP3R0B---	3.0	B,C,D	BP	100
CDR31BP3R3B---	3.3	B,C,D	BP	100
CDR31BP3R6B---	3.6	B,C,D	BP	100
CDR31BP3R9B---	3.9	B,C,D	BP	100
CDR31BP4R3B---	4.3	B,C,D	BP	100
CDR31BP4R7B---	4.7	B,C,D	BP	100
CDR31BP5R1B---	5.1	B,C,D	BP	100
CDR31BP5R6B---	5.6	B,C,D	BP	100
CDR31BP6R2B---	6.2	B,C,D	BP	100
CDR31BP6R8B---	6.8	B,C,D	BP	100
CDR31BP7R5B---	7.5	B,C,D	BP	100
CDR31BP8R2B---	8.2	B,C,D	BP	100
CDR31BP9R1B---	9.1	B,C,D	BP	100
CDR31BP100B---	10	F,J,K	BP	100
CDR31BP110B---	11	F,J,K	BP	100
CDR31BP120B---	12	F,J,K	BP	100
CDR31BP130B---	13	F,J,K	BP	100
CDR31BP150B---	15	F,J,K	BP	100
CDR31BP160B---	16	F,J,K	BP	100
CDR31BP180B---	18	F,J,K	BP	100
CDR31BP200B---	20	F,J,K	BP	100
CDR31BP220B---	22	F,J,K	BP	100
CDR31BP240B---	24	F,J,K	BP	100
CDR31BP270B---	27	F,J,K	BP	100
CDR31BP300B---	30	F,J,K	BP	100
CDR31BP330B---	33	F,J,K	BP	100
CDR31BP360B---	36	F,J,K	BP	100
CDR31BP390B---	39	F,J,K	BP	100
CDR31BP430B---	43	F,J,K	BP	100
CDR31BP470B---	47	F,J,K	BP	100
CDR31BP510B---	51	F,J,K	BP	100
CDR31BP560B---	56	F,J,K	BP	100
CDR31BP620B---	62	F,J,K	BP	100
CDR31BP680B---	68	F,J,K	BP	100
CDR31BP750B---	75	F,J,K	BP	100
CDR31BP820B---	82	F,J,K	BP	100
CDR31BP910B---	91	F,J,K	BP	100
L- Add appropriate failure rate_ Add appropriate termination finishCapacitance Tolerance				

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 0805/CDR31 (BP) cont'd				

CDR31BP101B---	100	F,J,K	BP	100
CDR31BP111B---	110	F,J,K	BP	100
CDR31BP121B---	120	F,J,K	BP	100
CDR31BP131B---	130	F,J,K	BP	100
CDR31BP151B---	150	F,J,K	BP	100
CDR31BP161B---	160	F,J,K	BP	100
CDR31BP181B--	180	F,J,K	BP	100
CDR31BP201B--	200	F,J,K	BP	100
CDR31BP221B--	220	F,J,K	BP	100
CDR31BP241B---	240	F,J,K	BP	100
CDR31BP271B---	270	F,J,K	BP	100
CDR31BP301B---	300	F,J,K	BP	100
CDR31BP331B---	330	F,J,K	BP	100
CDR31BP361B---	360	F,J,K	BP	100
CDR31BP391B---	390	F,J,K	BP	100
CDR31BP431B---	430	F,J,K	BP	100
CDR31BP471B--	470	F,J,K	BP	100
CDR31BP511A--	510	F,J,K	BP	50
CDR31BP561A--	560	F,J,K	BP	50
CDR31BP621A---	620	F,J,K	BP	50
CDR31BP681A---	680	F,J,K	BP	50

AVX Style 0805/CDR31 (BX)

CDR31BX471B---	470	K,M	BX	100
CDR31BX561B---	560	K,M	BX	100
CDR31BX681B---	680	K,M	BX	100
CDR31BX821B---	820	K,M	BX	100
CDR31BX102B---	1,000	K,M	BX	100
CDR31BX122B---	1,200	K,M	BX	100
CDR31BX152B---	1,500	K,M	BX	100
CDR31BX182B---	1,800	K,M	BX	100
CDR31BX222B---	2,200	K,M	BX	100
CDR31BX272B---	2,700	K,M	BX	100
CDR31BX332B---	3,300	K,M	BX	100
CDR31BX392B---	3,900	K,M	BX	100
CDR31BX472B---	4,700	K,M	BX	100
CDR31BX562A---	5,600	K,M	BX	50
CDR31BX682A---	6,800	K,M	BX	50
CDR31BX822A---	8,200	K,M	BX	50
CDR31BX103A---	10,000	K,M	BX	50
CDR31BX123A---	12,000	K,M	BX	50
CDR31BX153A---	15,000	K,M	BX	50
CDR31BX183A---	18,000	K,M	BX	50

1/The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

1/The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Packaging of Chip Components

Automatic Insertion Packaging

TAPE \& REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

	4 mm	8 mm		12 mm	
Paper or Embossed Carrier		$0612,0508,0805,1206$, 1210			
Embossed Only	0101		1808	1812,1825 2220,2225	
Paper Only	4,000	0101, 0201, 0306, 0402,0603 $2,000,3,000$ or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	$500,1,000$ Contact factory for exact quantity	
Qty. per Reel/7" Reel	$5,000,10,000,50,000$ Contact factory for exact quantity	10,000	4,000		
Qty. per Reel/13" Reel					

REEL DIMENSIONS

* Drive spokes optional, if used asterisked dimensions apply.

40 (1.575) Min. Access Hole At Slot Location
(Arbor Hole Dia.)

Tape Slot in
Core For Tape Start.
2.50 (0.098) min. Width,
10.0 (0.394) min. Depth

Tape Size	A Max.	B^{*} Min.	C	D^{*} Min.	N Min.	W_{1}	$\begin{gathered} \mathbf{W}_{2} \\ \text { Max. } \end{gathered}$	W_{3}
4 mm	$\begin{gathered} 1.80 \\ (7.087) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.5 \\ (0.522 \pm 0.020) \end{gathered}$	$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 60.0 \\ (2.362) \end{gathered}$	$\begin{gathered} 4.35 \pm 0.3 \\ (0.171 \pm 0.011) \end{gathered}$	$\begin{gathered} \hline 7.95 \\ (0.312) \end{gathered}$	
8mm	$\begin{gathered} 330 \\ (12.992) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$		$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 50.0 \\ (1.969) \end{gathered}$	$\left.\begin{array}{c} 8.40-1.5 \\ (0.331-0.0 .059 \\ (0.0 .0 \end{array}\right)$	$\begin{gathered} 14.4 \\ (0.567) \end{gathered}$	$\begin{gathered} \text { 7.90 Min. } \\ (0.311) \\ 10.9 \mathrm{Max} . \\ (0.429) \end{gathered}$
12mm						$\begin{gathered} 12.4{ }_{-0.0}^{+2.0} \\ \left(0.488-{ }_{-0.0}^{+0.0}\right) \end{gathered}$	$\begin{gathered} 18.4 \\ (0.724) \end{gathered}$	$\begin{gathered} \text { 11.9 Min. } \\ (0.469) \\ 15.4 \mathrm{Max} . \\ (0.607) \end{gathered}$

[^5]English measurements rounded and for reference only.
(1) For tape sizes 16 mm and 24 mm (used with chip size 3640) consult EIA RS-481 latest revision.

Embossed Carrier Configuration

4, 8 \& 12mm Tape Only

Chip Orientation

4, 8 \& 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

Tape Size	$\mathbf{D}_{\mathbf{0}}$	\mathbf{E}_{1}	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{2}}$	\mathbf{S}_{1} Min.	T Max.	\mathbf{T}_{1} Max.
4 mm	0.80 ± 0.04	0.90 ± 0.05	2.0 ± 0.04	1.00 ± 0.02	1.075	0.26	0.06
	(0.031 ± 0.001)	(0.035 ± 0.001)	(0.078 ± 0.001)	(0.039 ± 0.0007)	(0.042)	(0.010)	(0.002)
8 mm	$1.50-0.0$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
$\& 12 \mathrm{~mm}$	$\left(0.059{ }_{-0.004}^{+0.0}\right)$	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)

VARIABLE DIMENSIONS

Tape Size	B_{1} Max.	$\begin{gathered} \mathbf{D}_{1} \\ \text { Min. } \end{gathered}$	$\begin{gathered} \mathbf{E}_{2} \\ \text { Min. } \end{gathered}$	F	\mathbf{P}_{1} See Note 5	R Min. See Note 2	T ${ }_{2}$	w Max.	$\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~K}_{0}$
8mm	$\begin{gathered} 4.35 \\ (0.171) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.039) \end{gathered}$	$\begin{gathered} 6.25 \\ (0.246) \end{gathered}$	$\begin{gathered} 3.50 \pm 0.05 \\ (0.138 \pm 0.002) \end{gathered}$	$\begin{gathered} 4.00 \pm 0.10 \\ (0.157 \pm 0.004) \end{gathered}$	$\begin{gathered} 25.0 \\ (0.984) \end{gathered}$	$\begin{gathered} \text { 2.50 Max. } \\ (0.098) \end{gathered}$	$\begin{gathered} 8.30 \\ (0.327) \end{gathered}$	See Note 1
12 mm	$\begin{gathered} 8.20 \\ (0.323) \end{gathered}$	$\begin{gathered} 1.50 \\ (0.059) \end{gathered}$	$\begin{gathered} 10.25 \\ (0.404) \end{gathered}$	$\left.\begin{array}{c} 5.50 \pm 0.05 \\ (0.217 \end{array} \pm 0.002\right)$	$\begin{gathered} 4.00 \pm 0.10 \\ (0.157 \pm 0.004) \end{gathered}$	$\begin{gathered} 30.0 \\ (1.181) \end{gathered}$	$\begin{aligned} & \text { 6.50 Max. } \\ & (0.256) \end{aligned}$	$\begin{gathered} 12.3 \\ (0.484) \end{gathered}$	See Note 1
8 mm 1/2 Pitch	$\begin{gathered} 4.35 \\ (0.171) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.039) \end{gathered}$	$\begin{gathered} 6.25 \\ (0.246) \end{gathered}$	$\begin{gathered} 3.50 \pm 0.05 \\ (0.138 \pm 0.002) \end{gathered}$	$\begin{gathered} 2.00 \pm 0.10 \\ (0.079 \pm 0.004) \end{gathered}$	$\begin{gathered} 25.0 \\ (0.984) \end{gathered}$	$\begin{aligned} & \text { 2.50 Max. } \\ & (0.098) \end{aligned}$	$\begin{gathered} 8.30 \\ (0.327) \end{gathered}$	See Note 1
12 mm Double Pitch	$\begin{gathered} 8.20 \\ (0.323) \end{gathered}$	$\begin{gathered} 1.50 \\ (0.059) \end{gathered}$	$\begin{gathered} 10.25 \\ (0.404) \end{gathered}$	$\begin{gathered} 5.50 \pm 0.05 \\ (0.217 \pm 0.002) \end{gathered}$	$\begin{gathered} 8.00 \pm 0.10 \\ (0.315 \pm 0.004) \end{gathered}$	$\begin{gathered} 30.0 \\ (1.181) \end{gathered}$	$\begin{aligned} & \text { 6.50 Max. } \\ & (0.256) \end{aligned}$	$\begin{gathered} 12.3 \\ (0.484) \end{gathered}$	See Note 1

NOTES:

1. The cavity defined by A_{0}, B_{0}, and K_{0} shall be configured to provide the following:

Surround the component with sufficient clearance such that:
a) the component does not protrude beyond the sealing plane of the cover tape.
b) the component can be removed from the cavity in a vertical direction without mechanical
restriction, after the cover tape has been removed.
c) rotation of the component is limited to 20° maximum (see Sketches D \& E).
d) lateral movement of the component is restricted to 0.5 mm maximum (see Sketch F).
2. Tape with or without components shall pass around radius " R " without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
4. B_{1} dimension is a reference dimension for tape feeder clearance only.
5. If $P_{1}=2.0 \mathrm{~mm}$, the tape may not properly index in all tape feeders.

Top View, Sketch "F"
Component Lateral Movements

Paper Carrier Configuration

8 \& 12mm Tape Only

8 \& 12mm Paper Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

Tape Size	$\mathbf{D}_{\mathbf{0}}$	\mathbf{E}	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{G} . \mathbf{M i n}$.	\mathbf{R} Min.
8 mm and 12 mm	$1.500_{0.0 .10}^{+0.04}$	1.75 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	0.10	0.75	$25.0(0.984)$
(0.059)	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.004)	(0.030)	See Note 2 Min.	

VARIABLE DIMENSIONS

Tape Size	$\begin{gathered} \mathrm{P}_{1} \\ \text { See Note } 4 \end{gathered}$	$\mathrm{E}_{2} \mathrm{Min}$.	F	W	$\mathrm{A}_{0} \mathrm{~B}_{0}$	T
8 mm	$\begin{gathered} 4.00 \pm 0.10 \\ (0.157 \pm 0.004) \end{gathered}$	$\begin{gathered} 6.25 \\ (0.246) \end{gathered}$	$\begin{gathered} 3.50 \pm 0.05 \\ (0.138 \pm 0.002) \end{gathered}$	$\begin{gathered} 8.00{ }_{-0.30}^{+0.30} \\ \left(0.3155_{-0.004}^{+0.012}\right) \end{gathered}$	See Note 1	1.10mm(0.043) Max.for Paper BaseTape and1.60mm(0.063) Max.for Non-PaperBase Compositions
12 mm	$\begin{gathered} 4.00 \pm 0.010 \\ (0.157 \pm 0.004) \end{gathered}$	$\begin{gathered} 10.25 \\ (0.404) \end{gathered}$	$\begin{gathered} 5.50 \pm 0.05 \\ (0.217 \pm 0.002) \end{gathered}$	$\begin{gathered} 12.0 \pm 0.30 \\ (0.472 \pm 0.012) \end{gathered}$		
$\begin{gathered} 8 \mathrm{~mm} \\ 1 / 2 \text { Pitch } \end{gathered}$	$\begin{gathered} 2.00 \pm 0.05 \\ (0.079 \pm 0.002) \end{gathered}$	$\begin{gathered} 6.25 \\ (0.246) \end{gathered}$	$\begin{gathered} 3.50 \pm 0.05 \\ (0.138 \pm 0.002) \end{gathered}$	$\begin{gathered} 8.00{ }_{-0.30}^{+0.10} \\ \left(0.315{ }_{-0.004}^{+0.012}\right) \end{gathered}$		
12 mm Double Pitch	$\begin{gathered} 8.00 \pm 0.10 \\ (0.315 \pm 0.004) \end{gathered}$	$\begin{gathered} 10.25 \\ (0.404) \end{gathered}$	$\begin{aligned} 5.50 & \pm 0.05 \\ (0.217 & \pm 0.002) \end{aligned}$	$\begin{aligned} 12.0 & \pm 0.30 \\ (0.472 & \pm 0.012) \end{aligned}$		

NOTES:

1. The cavity defined by A_{0}, B_{0}, and T shall be configured to provide sufficient clearance surrounding the component so that:
a) the component does not protrude beyond either surface of the carrier tape;
b) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
c) rotation of the component is limited to 20° maximum (see Sketches A \& B);
d) lateral movement of the component is restricted to 0.5 mm maximum
2. Tape with or without components shall pass around radius " R " without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
4. If $P_{1}=2.0 \mathrm{~mm}$, the tape may not properly index in all tape feeders.
(see Sketch C).

Side or Front Sectional View
Sketch " A "

Top View, Sketch "C"

Top View
Sketch " B "

BENEFITS

- Easier handling
- Smaller packaging volume (1/20 of T/R packaging)
- Easier inventory control
- Flexibility
- Recyclable

CASE DIMENSIONS

BULK FEEDER

CASE QUANTITIES

Part Size	0402	0603	0805	1206
Qty. (pcs / cassette)	80,000	15,000	$\begin{gathered} 10,000\left(\mathrm{~T}=.0233^{\prime \prime}\right) \\ 8,000\left(\mathrm{~T}=.0311^{\prime \prime}\right) \\ 6,000\left(\mathrm{~T}=.043{ }^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 5,000\left(\mathrm{~T}=.0233^{\prime \prime}\right) \\ & 4,000\left(\mathrm{~T}=.0322^{\prime \prime}\right) \\ & 3,000\left(\mathrm{~T}=.044{ }^{\prime \prime}\right) \end{aligned}$

I. Capacitance (farads)

English: $C=\frac{.224 \mathrm{KA}}{\mathrm{T}_{\mathrm{D}}}$
Metric: $C=\frac{.0884 \mathrm{KA}}{\mathrm{T}_{\mathrm{D}}}$
II. Energy stored in capacitors (Joules, watt - sec)
$E=1 / 2 \mathrm{CV}^{2}$
III. Linear charge of a capacitor (Amperes)
$I=C \quad \frac{d V}{d t}$

IV. Total Impedance of a capacitor (ohms)

$Z=\sqrt{R_{S}^{2}+\left(X_{C}-X_{L}\right)^{2}}$
V. Capacitive Reactance (ohms)

$$
x_{C}=\frac{1}{2 \pi f C}
$$

VI. Inductive Reactance (ohms)
$x_{L}=2 \pi f L$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90°
Ideal Inductors: Current lags voltage 90°
Ideal Resistors: Current in phase with voltage
VIII. Dissipation Factor (\%)
D.F. $=\tan \delta$ (loss angle) $=\frac{\text { E.S.R. }}{X_{C}}=(2 \pi f C)($ E.S.R. $)$
IX. Power Factor (\%)
P.F. $=$ Sine δ (loss angle) $=\operatorname{Cos} \phi$ (phase angle)
P.F. $=($ when less than $10 \%)=$ DF
X. Quality Factor (dimensionless)
$Q=\operatorname{Cotan} \delta($ loss angle $)=\frac{1}{\text { D.F. }}$

XI. Equivalent Series Resistance (ohms)

E.S.R. $=($ D.F. $)(X c)=($ D.F. $) /(2 \pi f C)$
XII. Power Loss (watts)

Power Loss $=\left(2 \pi \mathrm{fCV}^{2}\right)($ D.F. $)$
XIII. KVA (Kilowatts)
$K V A=2 \pi f^{\prime} V^{2} \times 10^{-3}$
XIV. Temperature Characteristic (ppm/ ${ }^{\circ} \mathrm{C}$)
T.C. $=\frac{C t-C_{25}}{\mathrm{C}_{25}\left(\mathrm{~T}_{\mathrm{t}}-25\right)} \times 10^{6}$
XV. Cap Drift (\%)
C.D. $=\frac{C_{1}-C_{2}}{C_{1}} \times 100$

XVI. Reliability of Ceramic Capacitors

$\begin{aligned} & L_{0} \\ & t_{t}\end{aligned}=\left(\frac{V_{t}}{V_{0}}\right)^{X} \quad\binom{T_{t}}{T_{0}}^{Y}$

XVII. Capacitors in Series (current the same)

Any Number:

$$
\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}--\frac{1}{C_{N}}
$$

Two: $\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
XVIII. Capacitors in Parallel (voltage the same)
$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}---\mathrm{C}_{\mathrm{N}}$

XIX. Aging Rate

A.R. $=\% \Delta \mathrm{C} /$ decade of time

XX. Decibels

$\mathrm{db}=20 \log \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}$

METRIC PREFIXES

SYMBOLS

Pico	$\times 10^{-12}$	K	= Dielectric Constant	f	= frequency	4	$=$ Test life
Nano	$\times 10^{-9}$						
Micro	$\times 10^{-6}$	A	= Area	L	= Inductance	V_{t}	= Test voltage
Milli	$\times 10^{-3}$						
Deci	$\times 10^{-1}$	T_{D}	= Dielectric thickness	δ	= Loss angle	V	= Operating voltage
Deca	$\times 10^{+1}$	V	= Voltage	ϕ	= Phase angle	T_{t}	= Test temperature
Kilo	$\times 10^{+3}$,	- Volage		- Phase angle	t	- Test temperaure
Mega	$\times 10^{+6}$	t	= time	X \& Y	$=$ exponent effect of voltage and temp.	To	= Operating temperature
Giga	$\times 10^{+9}$						
Tera	$\times 10^{+12}$	R_{S}	= Series Resistance	L_{0}	$=$ Operating life		

Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple
structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today's electronic equipment.

Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 - Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive $\left.0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$.

Class 2 - EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only $\pm 15 \%$ over the temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. It finds applications where stability over a wide temperature range is required.
The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y 5 V can vary from 22% to -82% over the $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range	
RS198	Temperature Range
X7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
X6	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
X5	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Y5	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Z5	$+10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Code	Percent Capacity Change
D	$\pm 3.3 \%$
E	$\pm 4.7 \%$
F	$\pm 7.5 \%$
P	$\pm 10 \%$
R	$\pm 15 \%$
S	$\pm 22 \%$
T	$+22 \%,-33 \%$
U	$+22 \%,-56 \%$
V	$+22 \%,-82 \%$
EXAMPLE - A capacitor is desired with the capacitance value at $25^{\circ} \mathrm{C}$ to	
increase no more than 7.5% or derease no more than 7.5% from	
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ EIA Code will be Y5F.	

MIL CODE		
Symbol	Temperature Range	
$\begin{aligned} & A \\ & B \\ & B \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$	
Symbol	Cap. Change Zero Volts	Cap. Change Rated Volts
R	+15\%, -15\%	+15\%, -40\%
S	+22\%, -22\%	+22\%, -56\%
W	+22\%, -56\%	+22\%, -66\%
X	+15\%, -15\%	+15\%, -25\%
Y	+30\%, -70\%	+30\%, -80\%
Z	+20\%, -20\%	+20\%, -30\%
symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.		

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage - Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation |factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

Cap. Change vs. A.C. Volts
 X7R

Figure 2
Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

Figure 3
Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Effects of Time - Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.
If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, $\left(125^{\circ} \mathrm{C}\right.$ for 4 hours or $150^{\circ} \mathrm{C}$ for $1 / 2$ hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age
capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Figure 6
Effects of Frequency - Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in Iow K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com.

Effects of Mechanical Stress - High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high " K " dielectrics as coupling capacitors in extremely low level applications.
Reliability - Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$
\frac{L_{o}}{L_{t}}=\left(\frac{V_{t}}{V_{o}}\right)^{x}\left(\frac{T_{t}}{T_{o}}\right)^{Y}
$$

where

$$
\begin{aligned}
\mathbf{L}_{\mathbf{o}} & =\text { operating life } & \mathbf{T}_{\mathbf{t}} & =\text { test temperature and } \\
\mathbf{L}_{\mathbf{t}} & =\text { test life } & \mathbf{T}_{\mathbf{o}} & =\text { operating temperature } \\
\mathbf{V}_{\mathbf{t}} & =\text { test voltage } & & \text { in }{ }^{\circ} \mathrm{C} \\
\mathbf{V}_{\mathbf{o}} & =\text { operating voltage } & \mathbf{X}, \mathbf{Y} & =\text { see text }
\end{aligned}
$$

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$
C=\frac{.224 \mathrm{KA}}{t}
$$

$$
\begin{aligned}
\mathbf{C}= & \text { capacitance (picofarads) } \\
\mathbf{K}= & \text { dielectric constant (Vacuum =1) } \\
\mathbf{A}= & \text { area in square inches } \\
\mathbf{t}= & \text { separation between the plates in inches } \\
& \text { (thickness of dielectric) } \\
. \mathbf{2 2 4}= & \text { conversion constant } \\
& (.0884 \text { for metric system in } \mathrm{cm})
\end{aligned}
$$

Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro $\left(10^{-6}\right)$, nano $\left(10^{-9}\right)$ or pico $\left(10^{-12}\right)$ farad level.
Dielectric Constant - In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.
Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.
Area - Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored - The energy which can be stored in a capacitor is given by the formula:

$$
\mathbf{E}=1 / 2 \mathbf{C} \mathbf{V}^{2}
$$

$\mathbf{E}=$ energy in joules (watts-sec)
$\mathbf{V}=$ applied voltage
$\mathbf{C}=$ capacitance in farads
Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$
I_{\text {ideal }}=C \frac{d V}{d t}
$$

where

$$
\begin{aligned}
\mathbf{I} & =\text { Current } \\
\mathbf{C} & =\text { Capacitance } \\
\mathbf{d V} / \mathbf{d t} & =\text { Slope of voltage transition across capacitor }
\end{aligned}
$$

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.
Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

$$
\mathbf{C}=\text { Capacitance } \quad \mathbf{L}=\text { Inductance }
$$

$\mathbf{R}_{\mathbf{s}}=$ Series Resistance $\quad \mathbf{R}_{\mathbf{p}}=$ Parallel Resistance Reactance - Since the insulation resistance $\left(R_{p}\right)$ is normally very high, the total impedance of a capacitor is:

$$
Z=\sqrt{R_{S}^{2}+\left(X_{C}-X_{L}\right)^{2}}
$$

where

$$
\begin{aligned}
& \mathbf{Z}=\text { Total Impedance } \\
& \mathbf{R}_{\mathrm{s}}=\text { Series Resistance } \\
& \mathbf{X}_{\mathrm{C}}=\text { Capacitive Reactance }=\frac{1}{2 \pi \mathrm{fC}} \\
& \mathbf{X}_{\mathrm{L}}=\text { Inductive Reactance }=2 \pi \mathrm{fL}
\end{aligned}
$$

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.
Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance R_{S}. The complement of this angle is called the loss angle and:

> Power Factor (P.F.) $=\operatorname{Cos} \phi$ or Sine δ
> Dissipation Factor (D.F.) $=\tan \delta$
for small values of δ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor - The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

$$
\text { Dissipation Factor }=\frac{\text { E.S.R. }}{X_{C}}=(2 \pi f C)(E . S . R .)
$$

The watts loss are:

Watts loss =(2 $\left.\pi \mathrm{fCV}^{2}\right)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.
Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$
\mathrm{V}=\mathrm{L} \frac{d i}{d t}
$$

The $\frac{d i}{d t}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to $10 \mathrm{~A} / \mathrm{ns}$. At $0.3 \mathrm{~A} / \mathrm{ns}, 100 \mathrm{pH}$ of parasitic inductance can cause a voltage spike of 30 mV . While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.
Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$
f_{\text {res }}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance Rp shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product ($\mathrm{C} \times \mathrm{IR}$ or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).
Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.
Dielectric Absorption - A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.
Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

REFLOW SOLDERING

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

- Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.
- Pad overlap 0.5 mm beneath component.
- Pad extension 0.5 mm beyond components for reflow and 1.0 mm for wave soldering.

WAVE SOLDERING

$\begin{gathered} \uparrow \\ 02 \\ \downarrow \\ \downarrow \end{gathered}$						
	Case Size	D1	D2	D3	D4	D5
D1	0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
	0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
	1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat \& Soldering

The rate of preheat should not exceed $4^{\circ} \mathrm{C} /$ second to prevent thermal shock. A better maximum figure is about $2^{\circ} \mathrm{C} /$ second.
For capacitors size 1206 and below, with a maximum thickness of 1.25 mm , it is generally permissible to allow a temperature differential from preheat to soldering of $150^{\circ} \mathrm{C}$. In all other cases this differential should not exceed $100^{\circ} \mathrm{C}$.
For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.
Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at $20-45 \mathrm{kHz}$, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

REFLOW SOLDER PROFILES

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb -Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ-STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically $3 x$ reflow cycles at $260^{\circ} \mathrm{C}$ max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to $125^{\circ} \mathrm{C}$ may be rapid, but from that point $(2-3)^{\circ} \mathrm{C} / \mathrm{sec}$ is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body $\left(\sim 180^{\circ} \mathrm{C}\right)$.

Reflow:

In the reflow phase, the maximum recommended time $>230^{\circ} \mathrm{C}$ is 40 secs. Time at peak reflow is 10 secs max.; optimum reflow is achieved at $250^{\circ} \mathrm{C}$, (see wetting balance chart opposite) but products are qualified to $260^{\circ} \mathrm{C}$ max. Please reference individual product datasheets for maximum limits

Cool Down:

Cool down should not be forced and $6^{\circ} \mathrm{C} / \mathrm{sec}$ is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same $260^{\circ} \mathrm{C}$ max recommended for SnPb systems.

Preheat:

This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.

Wave:

$250^{\circ} \mathrm{C}-260^{\circ} \mathrm{C}$ recommended for optimum solderability.

Cool Down:

As with reflow solder, cool down should not be forced and $6^{\circ} \mathrm{C} / \mathrm{sec}$ is recommended. Any air knives at the end of the 2nd wave should be heated.

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity $<70 \%$ RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $235 \pm 5^{\circ} \mathrm{C}$ for 2 ± 1 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/Lead/Silver	Solder Temp. ${ }^{\circ} \mathrm{C}$	Immersion Time Seconds
Nickel Barrier	$60 / 40 / 0$	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is $250^{\circ} \mathrm{C}-260^{\circ} \mathrm{C}$ for $3-5$ seconds. The other parameters of the profile remains the same as above.
The following should be noted by customers changing from lead based systems to the new lead free pastes.
a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
b) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk
handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed $4^{\circ} \mathrm{C} /$ second and a target figure $2^{\circ} \mathrm{C} /$ second is recommended. Although an $80^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of $150^{\circ} \mathrm{C}$ (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25 mm . The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed $4^{\circ} \mathrm{C} /$ second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.
When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

POST SOLDER HANDLING

Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.
Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:
Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

Type A:
Angled crack between bottom of device to top of solder joint.

Type B:
Fracture from top of device to bottom of device.

Surface Mounting Guide MLC Chip Capacitors

COMMON CAUSES OF MECHANICAL CRACKING

The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.
A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.
Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

Preferred Method - No Direct Part Contact

REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.
However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be $<300^{\circ} \mathrm{C}$. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.

Poor Method - Direct Contact with Part

PCB BOARD DESIGN

To avoid many of the handling problems, AVX recommends that MLCs be located at least . $2^{\prime \prime}$ away from nearest edge of board. However when this is not possible, $A V X$ recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

AMERICAS
 AVX Greenville, SC

 Tel: 864-967-2150AVX Northwest, WA
Tel: 360-699-8746
AVX Midwest, IN
Tel: 317-861-9184
AVX Mid/Pacific, CA
Tel: 408-988-4900
AVX Northeast, MA
Tel: 617-479-0345

AVX Southwest, CA
Tel: 949-859-9509

AVX Canada

Tel: 905-238-3151
AVX South America
Tel: +55-11-4688-1960

EUROPE

AVX Limited, England
Tel: +44-1276-697000
AVX S.A.S., France
Tel: +33-1-69-18-46-00
AVX GmbH, Germany
Tel: +49-0811-95949-0
AVX SRL, Italy
Tel: +39-02-614-571
AVX Czech Republic
Tel: +420-57-57-57-521
AVX/ELCO UK
Tel: +44-1638-675000
ELCO Europe GmbH
Tel: +49-2741-299-0
AVX S.A., Spain
Tel: +34-91-63-97-197
AVX Benelux
Tel: +31-187-489-337

ASIA-PACIFIC

AVX/Kyocera (S) Pte Ltd., Singapore
Tel: +65-6286-7555
AVX/Kyocera, Asia, Ltd., Hong Kong
Tel: +852-2363-3303
AVX/Kyocera Yuhan Hoesa, South Korea
Tel: +82-2785-6504

AVX/Kyocera HK Ltd., Taiwan

Tel: +886-2-2656-0258
AVX/Kyocera (M) Sdn Bhd, Malaysia
Tel: +60-4228-1190
AVX/Kyocera International Trading Co. Ltd., Shanghai
Tel: +86-21-3255 1933
AVX/Kyocera Asia Ltd., Shenzen

Tel: +86-755-3336-0615
AVX/Kyocera International
Trading Co. Ltd., Beijing
Tel: +86-10-6588-3528
AVX/Kyocera India Liaison Office
Tel: +91-80-6450-0715

ASIA-KED

KED Hong Kong Ltd.

Tel: +852-2305-1080/1223

KED Hong Kong Ltd.
Shenzen
Tel: +86-755-3398-9600
KED Company Ltd.
Shanghai
Tel: +86-21-3255-1833
KED Hong Kong Ltd.
Beijing
Tel: +86-10-5869-4655
KED Taiwan Ltd.
Tel: +886-2-2950-0268
KED Korea Yuhan Hoesa, South Korea
Tel: +82-2-783-3604/6126
KED (S) Pte Ltd. Singapore
Tel: +65-6509-0328
Kyocera Corporation Japan
Tel: +81-75-604-3449

Contact:

[^0]: * Contact factory

[^1]: *Reflow Soldering Only

[^2]: *Reflow soldering only.

[^3]: *Reflow Soldering Only

[^4]: *For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

[^5]: Metric dimensions will govern

