
FILTER CONNECTORS

FILTER CONNECTORS EMI/EMP/RFI TRANSIENT PROTECTION

Your Filter Connection to the Future

Our Products

Sabritec designs and manufactures a full spectrum of sophisticated filter connector products. Our specialty is in the design of interconnect solutions addressing EMI/RFI filtering, and transient protection to meet demanding HIRF and Lightning requirements.

In addition to MIL-Spec interface type products, many of our designs are unique, built to conform to customer specifications requiring a high level of integration, special packaging, and critical electrical performance. Innovation is our distinction and our products

address a wide variety of applications. Our achievements lead the industry in the design and manufacture of special filter connector products.

FILTER CHARACTERISTICS Pg. 9

TRANSIENT PROTECTION Pg. 10

CERAMIC MULTI-LAYER CAPACITORS Pg. 13

ELECTRICAL PERFORMANCE Pg. 17

MECHANICAL & QUAL DATA Pg. 20

ESD & Composite Connectors Pg. 22

RoHS COMPLIANT

Pg. 23

MIL-DTL-38999

Pg. 24

MIL-DTL-83723 Pg. 29

MIL-C-26482 Pg. 31

ARINC 404

Pg. 33

ARINC 600

Pg. 35

MIL-DTL-83527

Pg. 37

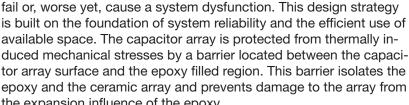
MIL-DTL-24308

Pg. 39

MIL-DTL-83513

Pg. 41

Combo D-Subminiature Connectors Pg. 43


FILTERED ADAPTERS

Pg. 45

Soldering Procedures Pg. 46

Our Design Strategy

Sabritec's design strategy for filter connectors is based on extensive experience with filter capacitor arrays and diodes. Our engineers understand the extreme environmental conditions that can cause a filter or diode to fail or, worse yet, cause a system dysfunction. This design strategy is built on the foundation of system reliability and the efficient use of available space. The capacitor array is protected from thermally induced mechanical stresses by a barrier located between the capaci-

the expansion influence of the epoxy.

Modularization

A disciplined design approach that employs methods of grouping multiple components into subassemblies wherever feasible. Such subassemblies may include a filter module, diode module, circuit assembly module and a transition interface assembly. Modularization results in cleaner, more standardized designs that provide flexibility in maintaining and upgrading the connector. An important advantage of modularization is that individual modules may be removed or replaced in the field without disturbing other subassemblies and components.

Integration

There is considerable unused space available in a standard non-filtered connector. Sabritec takes advantage of this space by removing components from elsewhere in the system and integrating them within the connector freeing up valuable board space. Isolating components electrically eliminates external wire connections and decreases crosstalk. The connector shell protects critical components from environmental or mechanical damage.

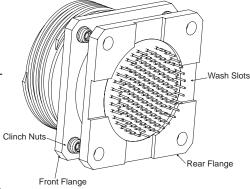
Filter Connectors

Advantages/Mounting Configurations/Water Sealed Versions

Advantages of Sabritec Filter Connectors

- Sabritec's filters connectors use monolithic capacitor arrays, the most reliable method of EMI/RFI filtering
- A single capacitor array can provide multiple capacitance values
- Most space efficient method of packaging EMI/RFI and EMP transient protection
- Connector shell protects the capacitor array and diodes from environmental, mechanical and thermal damage
- Transient voltage suppressors (transorbs) integrated into the connector offer EMP transient protection to sensitive circuitry. JANTX level or equivalent diode reliability screening is available
- System weight is reduced by integrating the filters and diodes into the connector
- Modular design techniques reduce the overall package size and improve connector maintainability
- Tested and documented using automatic test equipment

Ground Plane Stress Isolation Barrier Ferrite Potting Capacitor Arrays


EMI Filter Cross Section

Integrated Dual Flange

Another useful feature that can be incorporated into the connector design in order to ease final assembly and reduce system build costs is that of a dual flange. This enables the PCB or Flex Circuit to be soldered or fixed directly to the PC Tails protruding from the rear of the connector, after having been quickly and reliably 'mechanically fixed' by the use of self locking helicoils incorporated into the flange itself. Wash slots machined in the flange enable superior soldered joints to be achieved as a result of the void created, which allows even heat transfer during soldering. Subsequent cleaning processes being undertaken are also improved as a result of the same void, ensuring that no damaging flux residue remains in place.

Incorporation of this feature further acts as a rigid and mechanically strong standoff for the PCB, providing a solid datum point internally thus reducing any force experienced by the rear PC tails. Attachment of heavy PCB's can be easily tolerated with no damage to the connector experienced throughout its service life.

The final assembly stage can also be taken a step further with self-locking clinch nuts fixed to the front flange, resulting in faster assembly to the bulkhead and removing the need to purchase additional assembly components. These features can be accommodated in virtually all filter connector variants and enable the true system cost to be reduced for the user.

Standard EMI Filter Connector w/Integrated Dual Flange and Wash Slots

Water Sealed Filter Connectors

Electronic equipment that is used in harsh environments requires connectors that can withstand exposure to moisture, dust and other elements. Also many applications require components to meet the Ingress Protection (IP) rating of IP67 as specified by IEC 60529. Sabritec can provide water sealed connectors that can be successfully used in systems where moisture, humidity, water, and dust are present. These connectors are ideal for high-pressure/low leakage applications in land, air, sea, and space environments.

Water sealed connector features can be added to EMI/EMP filtered connector types that meet the applicable requirements of MIL-DTL-38999, MIL-DTL-26482, MIL-DTL-83527, MIL-DTL-81659, and ARINC 600. These connectors can also incorporate any special features desired including different mounting types and unique shell or flange configurations.

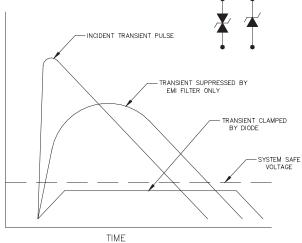
MIL-DTL-38999 Compliant Water Sealed Connector

Transient Protection

TVS Devices/Diode Suppression

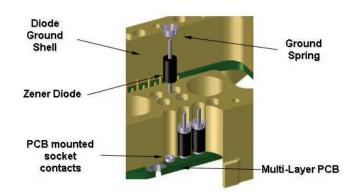
The increased sensitivity of electronic systems and mandated performance requirements such as RTCA DO-160 make transient protection paramount in system design today. Transient suppression built into the connector provides the most space efficient and effective method of protection against Electromagnetic Pulse (EMP), Lightning, Nuclear EMP and voltage transients. The excess energy is shunted to ground at the connector interface before it can even enter the system.

TVS diodes are mounted inside the connector around the periphery of the insert arrangement. Standard "catalog" diodes are utilized in order to increase reliability and minimize cost. JANTX diodes can be supplied; additionally, Sabritec has the capability to pre-screen diodes at component level testing and burn-in which eliminates infant mortality.


The connector shell dimensions vary with the quantity and type of diodes chosen, but generally fit within the outline defined by the mounting flange. Sabritec's method of mounting the diodes can be incorporated into any connector type including, but not limited to MIL-DTL-38999, ARINC 600 and ARINC 404.

Where required, transient protection can be combined with EMI/RFI filtering to provide maximum protection. The diodes as well as the EMI filter are packaged separately so that the construction of the connector remains modular. Therefore, individual diodes as well as the EMI filter can be removed or replaced without disassembling the connector.

EMI Connector with Diodes


Transient Curves

Advantages of Filtered EMP Connectors with Transient Protection and EMI Suppression

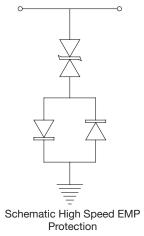
- Transient protection can be combined with EMI filtering if required
- Mixture of diode parameters varying power, voltage and polarity within the same connector is available
- Diodes can be removed and replaced without disassembly of the connector
- Transient protection is located at the interface of the system
- Separable diode and filter modules are more easily repaired
- Diodes and filters are protected by the shell reducing environmental and mechanical damage
- System retrofit to EMP/EMI is compatible with unprotected connectors

EMP Filter Construction

Transient Protection

High Speed EMP Protection/Surface Mount TVS Chip Diodes

In order to meet the ever increasing EMC system requirements mandated in today's world, Sabritec offers solutions for both EMC and EMP protection on high speed data lines. For Coax, Triax, and Twinax contact types, Sabritec has a unique design solution that offers tailored protection without degradation of the data signals being transmitted. This is accomplished by maintaining extremely low capacitance and leakage current levels on uniquely designed and packaged diode stacks, in combination with in-house manufactured high frequency EMC filters.


Manufactured in a robust modular manner, the connectors can be quickly disassembled from the front/rear providing access to the diode stacks for removal/replacement if they become damaged as a result of excess transients experienced in service. Operating frequencies in excess of 100 MHz can be successfully used with full EMC/EMP protection, fully safeguarding the equipment and offering a low risk / high performance solution.

High Speed Data Connector w/ Integrated EMI/EMP

With the advent of today's high signal transmission speeds coupled with low-level operating voltages, a need for high speed EMP protection circuitry has arisen. Sabritec has developed a complete series of EMP products ideally suited for this need. Densely packaged and protected within the connector shell, Sabritec employs the use of low voltage transient voltage suppressor (TVS) bipolar diodes connected in series to a parallel network of back-back rectifiers as shown in the schematic diagram.

Surface Mount Technology for Transient Protection

Sabritec can also offer transient protection in our connectors utilizing surface mount technology (SMT) chip diodes. These can be provided as an alternative to axially leaded components in instances where availability or source of supply problems could potentially become an issue. SMT diodes are provided by numerous manufacturers and distributors and in most cases readily available as they are widely used in the electronics industry. The incorporation of SMT components can potentially provide space and weight savings as well based on the particular connector and application requirements. If you have any questions in regards to SMT technology please contact Sabritec for further information.

Sabritec is able to offer lead free filter connector solutions upon request. Consult factory for more details.

Transient Voltage Suppression Diode Selection Guide

RTCA DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, is a widely used criterion for verifying the capability of equipment to withstand the effects of lightning induced electrical transients. In Section 22 of this standard, entitled Lightning Induced Transient Susceptibility, the test methods and procedures for performing pin injection and cable bundle testing on aircraft equipment are defined.

In order to verify the capability of an electronic system to withstand the effect of lightning induced transients, test procedures define the lightning induced transient by two characteristics:

- 1. The **transient waveform** which shows how quickly the transient is induced and how long it lasts. This is sometimes referred to as the pulse width and is measured in microseconds. The pulse width is related to the level of damaging energy contained within the transient, i.e. the longer the pulse, the more damage it will cause. The three most commonly referenced pin injection lightning waveforms from RTCA/DO-160E, Section 22, are shown in the figures below.
- 2. The **test level** which defines the magnitude of the pulse. This is related to the anticipated level of exposure of the electronic system, i.e. if a system is tucked away in a safe environment, e.g. inside a metal enclosure with the interconnecting wiring being well shielded, the test level will be low. However, if the system is highly exposed to the electromagnetic environment, the test level will be high. The test level is described in terms of the open circuit voltage (Voc) and the short circuit current (Isc).

In the table below for waveforms 3, 4, and 5A, we show the recommended diode clamping voltage (Vc) and power rating (Ppp) at each test level for these waveforms.

D	iode Clampi	ng Voltage (Vc)	Selection for	Lighting Strike	Waveform Thre	eats
RTCA/DO-160	LEVEL 1 100V/4A	LEVEL 2 250V/10A	LEVEL 3 600V/24A	LEVEL 4 1600V/60A	LEVEL 5A 3200V/128A	Recommended TVS (Ppp) @10/1000µs
Waveform 3	Vc 97 V	Vc 243 V	Vc 275 V	Vc 87 V	Vc 32.2 V	500 Watts
1MHz Damped	Vc 97 V	Vc 243 V	Vc 275 V	Vc 87 V	Vc 35.8 V	600 Watts
Sinusoidal Wave (Ref.	All	All	All	Vc 243 V	Vc 96.8 V	1,500 Watts
Fig. 22-4 from DO-160E)	All	All	All	Vc 275 V	Vc 209 V	3,000 Watts
DO-160E)	All	All	All	All	Vc 275 V	5,000 Watts
RTCA/DO-160	LEVEL 1 50V/10A	LEVEL 2 125V/25A	LEVEL 3 300V/60A	LEVEL 4 750V/150A	LEVEL 5A 1600V/320A	Recommended TVS (Ppp) @10/1000µs
	All	All	Vc 31.9 V	Vc 11.3 V	NONE	500 Watts
	All	All	Vc 38.2 V	Vc 13.6 V	NONE	600 Watts
Waveform 4	All	All	All	Vc 35.0 V	Vc 16.0 V	1,500 Watts
Double Exponential	All	All	All	Vc 74.0 V	Vc 29.2 V	3,000 Watts
6.4 X 69 µsec	All	All	All	Vc 134 V	Vc 35.5 V	5,000 Watts
(Ref. Fig. 22-5 from DO-160E)	All	All	All	All	Vc 114 V	15,000 Watts
	All	All	All	All	Vc 146 V	30,000 Watts
	All	All	All	All	All	200,000 Watts @ 10/40us
						Dan a sum and al
RTCA/DO-160	LEVEL 1 50V/50A	LEVEL 2 125V/125A	LEVEL 3 300V/300A	LEVEL 4 750V/750A	LEVEL 5A 1600V/1600A	Recommended TVS (Ppp) @10/1000µs
	All	Vc 10 V Vc 114.9 V	NONE	NONE	NONE	500 Watts
	All	Vc 12.4 V Vc 112.6 V	NONE	NONE	NONE	600 Watts
Waveform 5A Double	All	Vc 42.2 V Vc 82.8 V	Vc 12.1 V	None	NONE	1,500 Watts
Exponential 40 X 120 µsec	AII	All	Vc 25.5 V	Vc 9.4 V	NONE	3,000 Watts
(Ref. Fig. 22-6	All	All	Vc 45.8 V	Vc 15.9 V	NONE	5,000 Watts
from DO-160E)	All	All	All	Vc 49.9 V	NONE	15,000 Watts
	All	All	All	Vc 77.4 V	NONE	30,000 Watts
	All	All	All	Vc 231 V	NONE	200,000 Watts @ 10/40us

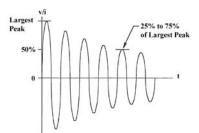
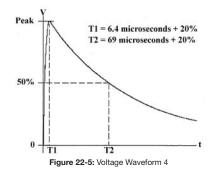
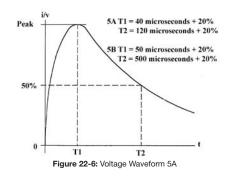
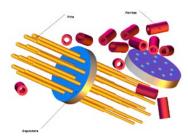




Figure 22-4: 1MHz Frequency Damped Sinusoidal Voltage/Current Waveform 3

Planar Array Technology

Sabritec internally manufacturers the monolithic ceramic capacitor array on both thick and thin film technology. Using a dry process to laminate the layers of X7R and COG material ceramic tape, Sabritec is capable of achieving capacitance values from 100pF to 100nF on the same array.


Parameter	Planar Array	Tubular	Chip
Capacitance	>60,000 PF	>10,000 PF	>50,000 PF
DWV	750 VDC	500 VDC	500 VDC
Resonance	None	None	120 MHz
Vibration	Very Good	Very Poor	Poor
MTBF	High	Low	Moderate

Our extensive in house capability allows for unique applications and arrangements not engineered elsewhere in the connector world. This may include mixed contact sizes, new insert arrangements, or high voltage applications up to 2000 VDC Dielectric Withstand Voltages (DWV).

The planar array is much more complex and versatile in its design. The planar uses the same X7R material as the tubular capacitor, however the electrodes run perpendicular to the contact, allowing higher capacitance and higher voltage ratings, as the pin to pin spacing is not effected by this design approach. With the electrodes running perpendicular to the contact, we can stack more electrodes thus increasing capacitance and at the same time, thicken the dielectric between electrodes to increase the withstanding voltages within the medium.

The planar array also has the advantage of strength. As the layers of ceramics are stacked perpendicular to the contact, we can increase the planar thickness to about .100" to withstand high vibration scenarios. This far outweighs the .015" thickness found in the tubular capacitor.

Because the capacitor is ceramic, it is relatively brittle in comparison to the other components of a connector (metal, rubber and plastic). Therefore, the internal construction of the filter connector must isolate the capacitors from mechanical stress.

Sabritec uses a thin wall ground plane or spring to house the filter elements. The ground plane is captured between halves of the connector shell to provide mechanical retention as well as electrical contact with 3GG degree attachment to ground. Thermal stress from the connector shell is not transferred to the capacitor arrays due to a compliant fit between the outside diameter of the ground plane or spring and the inside of the shell. Stress from the contacts is eliminated through the use of a block of epoxy on either side of the capacitors. Sabritec further isolates the capacitors with a proprietary stress isolation barrier between the epoxy and the capacitors.

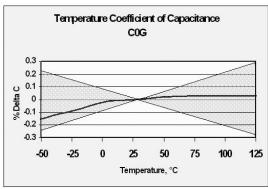
Filter Type	Filter Circuit	Best Application
Pi		Unknown or medium source and load impedance
LC	· ************************************	Low source and high load impedance
CL	•	High source and low load impedance
С		High source and high load impedance
Т	~mm_mm~	Low source and low load impedance

High source or load impedance >100 Ohms Low source or load impedance < 10 Ohms

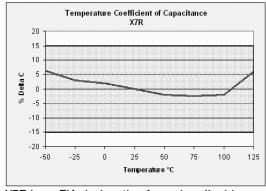
Note: All Filters are passive low pass filters. Please consult factory for other types of filters such as band-pass, notch, or high pass filters.

Ceramic Multi-layer Capacitors

Design Guide for Monolithic Capacitor Arrays

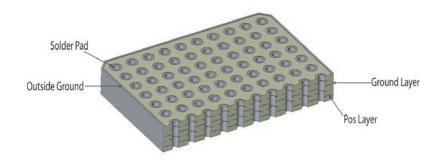

The heart of the filter connector is the capacitor array, consisting of multiple layers of ceramic insulators and precious metal conductors. The ceramic component has the unique ability to store a charge. The amount of charge that a capacitor can store depends on its capacitance and the applied voltage. The capacitance depends upon the composition of the insulator (better known as the dielectric).

Every dielectric has an inherent ability to store charge when compared to a vacuum. This ratio is called a dielectric constant (K). Air, for example, has a dielectric constant of about 1.0. In comparison, mica has a dielectric constant of 6.0. In other words, mica has the ability to hold 6 times more of a charge than air. The dielectric materials used at Sabritec have dielectric constants of 95 (COG) and 3000 (X7R). The capacitance also is influenced by the geometry of the capacitor. For a simple single layer capacitor, the capacitance increases with an increase in cross-sectional area. The capacitance can also increase with decreasing thickness.


There are four major guidelines when designing a particular capacitor array:

- 1. The design must be large enough to compensate for shrinkage.
- 2. Multi-capacitance arrays require several multi screen designs.
- 3. A high capacitance design should not exceed a certain number of layers.
- 4. A high voltage design must meet a minimum fired thickness.

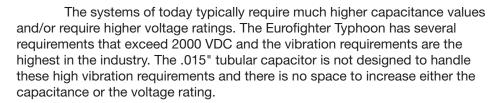
The capacitance is influenced by the number of active printed layers, the overlap area, and the thickness of each layer. There must be a balance between all three parameters to ensure a reliable and economical component. With each printed layer, precious metal is used which is costly. The amount of overlapping area between the ground plane and positive pattern must be small enough to minimize alignment variations, which can lead to failure, yet large enough to minimize the number of printed layers required to obtain a particular


COG is an EIA designation for a low dielectric constant temperature, voltage, and frequency stable dielectric ceramic material. The above graph shows the stability of capacitance over the temperature range from -55°C to +125°C.

X7R is an EIA designation for a class II mid K dielectric material that has a maximum temperature coefficient of $\pm 15\%$ over the temperature range from -55°C to 125°C.

capacitance target. Large overlapping areas can increase the distribution of capacitance between the population of holes within a part.

Finally, the layer thickness must be large enough to safely exceed the specified voltage requirements. If the layer thickness design is too large, then more printed layers are needed, increasing the overall thickness, making the capacitor too thick to fit into the connector design. If the capacitor is too thin, it may be prone to cracking during ceramic processing. There will always be at least two screens used for any one ceramic design; the ground plane and positive pad. The ground plane provides the ground connection to the connector shell. The positive pad provides connection to the contact pins.


Ceramic Multi-layer Capacitors

Tubular Capacitors vs. Chip Capacitors

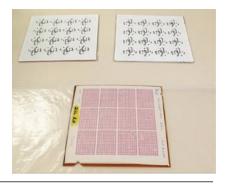
Tubular Capacitor Technology

In the early 1980's the filter connector (still in its infancy) used exclusively tubular type capacitors. These capacitors served the needs of the industry well at that time. However, low yields and an array of quality problems suggested that the tubular capacitor was no longer sufficient for the systems it was designed into. Therefore, in the late 1980's the monolithic planar array was born into existence.

This new technology incorporated the monolithic chip capacitor technology and adapted it to a multi line configuration. This gave both the ability to achieve higher capacitance per line as well as higher dielectric withstanding voltages. The two technologies are vastly different in their design and capabilities. The tubular capacitor is, as it suggests, a tube running the length of the contact with electrodes buried inside. The wall thickness of the tube is dictated by the pin to pin spacing of the connector, the metal ground plate used to ground the capacitor, and the size of the ferrite in a Pi section filter. In a 150 line ARINC 600 module, the pin to pin spacing is .100". Therefore the wall thickness of the tube is .050" minus the web dimension of the ground plane minus the wall thickness of the ferrite. Typically it ends up being around .015" thick. This limited thickness has to be designed to withstand the voltage rating of the system, achieve the desired capacitance and be strong enough for system vibration.

Today's systems mandate harsh environmental constraints to be subjected to component hardware. The dielectric material in the capacitor typically is X7R type material to achieve the highest capacitance with the least change in capacitance over the temperature range. The tube has the electrodes (which when stacked together increase capacitance) running parallel to the contact. This in combination with the pin to pin spacing limits the capacitance to about 7000 pF at 200 VDC working voltage.

Chip Capacitors


The use of chip capacitors in military applications is typically not allowed in connectors. The reason is two fold; First, chip capacitors tend to resonate at frequencies above 120 MHz and during a swept EMC test tend to fail at those frequencies. Secondly, they also take up too much space and tend to lower the MTBF rating of the connector as a whole. The planar array is much more rugged of an assembly and not subject to the thermal shock and vibration that the chip capacitors surface mounted to the PCB would face. Lastly, the planar array ensures a 360 degree attachment to ground to maximize insertion loss up to 1 GHz and beyond. The chip capacitor does not have a circumferential ground and radiated emissions may not be captured by this solution.

Filter Connector Terminology

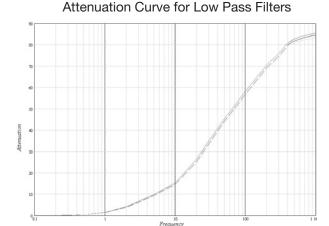
<u>Working or Operational Voltage</u> is the maximum voltage that can be continuously sustained. The dielectric utilized to manufacture the capacitor sets this value, which is directly proportional to the distance between ground planes and electrodes, whether a tubular capacitor or a planar array.

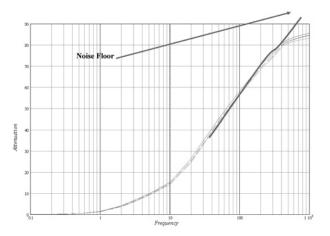
Insulation resistance (IR) is generally measured at the capacitor or connectors working voltage. This ensures that

when utilized at these voltages, there is sufficient resistance between contacts and from a contact to ground, so as not to cause electrical shorts. Typical values are approximately 5000 mega-ohms. Lower values may be required for high capacitance values.

<u>Capacitance</u> is a product of the overlap between ground planes and electrodes, and the dielectric utilized (The dielectric constant of the ceramic k). Capacitance plays a key role in the filter performance. Capacitors impedance lowers as frequency increases. The greater the frequency, the greater the effect of filtering or attenuation for a low-pass filter.

Noise Floor is the value at which the connector will not exceed. Typically 75-85dB. This is limited by capacitor performance, source and load impedance and ground resistance. The graph on the right shows attenuation still increasing at 80db.

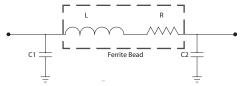

<u>Cross talk</u> is a disturbance, caused by electromagnetic interference, along a circuit or a cable pair. A telecommunication signal disrupts a signal in an adjacent circuit and can cause the signals to become confused and cross over each other.


<u>Dielectric Withstanding Voltage (DWV)</u> is the connectors upper voltage capability, for short non sustainable periods only. This can be specified as duration. The capacitor array will be weakened by multiple and sustained applied voltages at DWV levels.

<u>Planar Array</u> is the most common form of filter components utilized in connectors within our market areas. They provide high performance filters, are rugged enough to withstand high

environmental vibration levels and can be manufactured with working voltages up to 1000 VDC with relative ease.

<u>Dissipation Factor (DF)</u> is the ratio of the energy dissipated to the energy stored in a dielectric per hertz, also equal to the tangent of the loss angle. It is also defined as the reciprocal of the ratio between the insulating materials capacitive reactance to its resistance at a specified frequency. It measures the inefficiency of an insulating material. If a material were to be used for strictly insulating purposes, it would be better to have a lower dielectric constant.



Electrical Performance Pi Filter

Electrical Characteristics - 'Pi' Section

Filter Description	P200	P100	P76	P38	P20	P10	P8	P4	P2	P1
Operating Temperature Range		-55°C to + 125°C								
Voltage Rating 100 VD		00 VDC			2	200 VDC	-120 Vri	ms 400	Hz	
Current Rating DC				15 am	nps siz	e 16/7.5	amps s	ize 20/5	amps	size 22
Insulation Resistance					500	00 mega	hms mir	า. @100	VDC	
Current Rating R.F.						3.0	amps r	nax.		
DWV Sea Level w/ 50 micro-amps max. charge/discharge	2	250 VDC					500 VD	С		

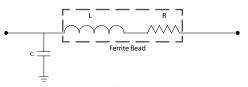
'Pi' Section Curves

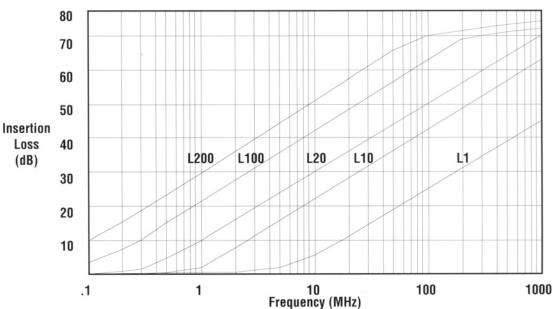
Insertion Loss Table

Filter Description	See Notes	P200	P100	P76	P38	P20	P10	P8	P4	P2	P1
Capacitance in Nanofarads @ 1Khz,. 1VRMS		160 240	80 120	60 91	30 46	16 24	8 12	6.4 9.2	3.2 4.8	1.6 2.4	.8 1.2
	Freq Mhz										
	.1	8	4.1	3	1	.3	.1	-	-	-	-
	1.0	22.2	19.6	18.2	13.3	8.2	3.9	2.9	.9	.2	-
Minimum No Attenuation loss @ 25°	2	32.8	21.7	19.7	16.8	12.7	8	6.6	2.9	1	.3
	10	73.5	61	57	44.4	31.5	20.6	18.3	12.8	8.1	4.0
	100	85+	85+	85+	85+	78	65.8	61.9	49.6	37.3	25.6
	500-1k	85+	85+	85+	85+	85+	85+	80	75	64	52

Notes:

- 1. P200 & P100 Capacitance Values for Size 20 Contact Arrangement & Larger
- 2. No Load Minimum Attenuation Values per MIL-STD-220
- 3. Capacitance in Nanofarads (Nominal Value)
- 4. Consult Factory for Higher Voltages & Capacitance Values




Electrical Performance "L" Filter

Electrical Characteristics - 'L' Section

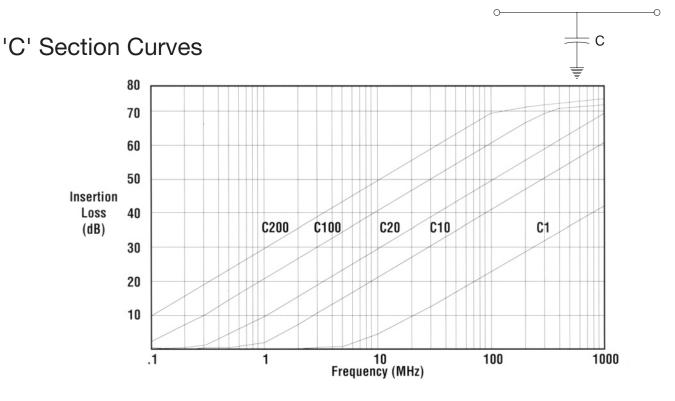
Filter Description		L100	L76	L38	L20	L10	L8	L4	L2	L1
Operating Temperature Range						-55	°C to + 1	125°C		
Voltage Rating		00 VDC			2	200 VDC	C-120 Vr	ms 400	Hz	
Current Rating DC				15 an	nps siz	e 16/7.5	amps s	ize 20/5	amps	size 22
Insulation Resistance					500	00 mego	hms mi	n. @100	VDC	
Current Rating R.F.						3.0	amps r	max.		
DWV Sea Level w/ 50 micro-amps max. charge/discharge	2	50 VDC					500 VD	С		

'L' Section Curves

Insertion Loss Table

Filter Description	See Notes	L200	L100	L76	L38	L20	L10	L8	L4	L2	L1
Capacitance in Nanofarads @ 1Khz,. 1VRMS		160 240	80 120	60 91	30 46	16 24	8 12	6.4 9.2	3.2 4.8	1.6 2.4	.8 1.2
	Freq Mhz										
	.1	8.6	4.1	3	1	.3	.1	-	-	-	-
	1.0	28	22	20.1	14.2	8.6	4	3	.9	.2	-
Minimum No Attenuation loss @ 25°	2	34.3	28.3	26.3	20.3	14.4	8.8	7.2	3.1	1	-
	10	49	43	41.1	35	29	23	21.1	15.1	9.5	4.8
	100	69.9	63.9	62	55.9	49.9	43.9	42	35.9	29.9	23.9
	500-1k	83.7	77.7	75.8	69.7	63.7	57.7	55.8	49.7	43.7	37.7

Notes:


- 1. L200, L100 & L76 Capacitance Values for Size 20 Contact Arrangement & Larger
- 2. No Load Minimum Attenuation Values per MIL-STD-220
- 3. Capacitance in Nanofarads (Nominal Value)
- 4. Consult Factory for Higher Voltages & Capacitance Values

Electrical Performance "C" Filter

Electrical Characteristics - 'C' Section

Filter Description		C100	C76	C38	C20	C10	C8	C4	C2	C1
Operating Temperature Range						-55	°C to + 1	125°C		
Voltage Rating		00 VDC			2	200 VDC	-120 Vri	ms 400	Hz	
Current Rating DC				15 am	nps size	e 16/7.5	amps s	ize 20/5	amps	size 22
Insulation Resistance					500	00 megc	hms mii	า. @100	VDC	
Current Rating R.F.						3.0	amps r	nax.		
DWV Sea Level w/ 50 micro-amps max. charge/discharge	2	250 VDC					500 VD	С		

Insertion Loss Table

Filter Description	See Notes	C200	C100	C76	C38	C20	C10	C8	C4	C2	C1
Capacitance in Nanofarads @ 1Khz,. 1VRMS		160 240	80 120	60 91	30 46	16 24	8 12	6.4 9.2	3.2 4.8	1.6 2.4	.8 1.2
	Freq Mhz										
	.1	8.6	4.1	3	1	.3	.1	-	-	-	-
	1.0	28	22	20.1	14.2	8.6	4.1	3	1	.3	.1
Minimum No Attenuation loss @ 25°	2	34	28	26.1	20.1	14.2	8.6	7	3	1	.3
	10	48	42	40	34	28	22	20.1	14.2	8.6	4.1
	100	68	62	60	54	48	42	40	34	28	22
	500-1k	82	76	74	68	62	56	54	48	42	36

Notes:

- 1. C200, C100 & C76 Capacitance Values for Size 20 Contact Arrangement & Larger
- 2. No Load Minimum Attenuation Values per MIL-STD-220
- 3. Capacitance in Nanofarads (Nominal Value)
- 4. Consult Factory for Higher Voltages & Capacitance Values

Mechanical & Qualification Data

Sabritec connectors conform to the applicable military specifications and standards for materials, finishes and mechanical form, fit, and function. Filter connectors are fully intermateable and interchangeable in most instances with standard non-filtered QPL MIL-SPEC connectors.

Material and Finishes					
Shell & Jam Nut	Aluminum Alloy Electroless Nickel per MIL-C-26074				
Pin Contacts	Brass per ASTM B16 Gold Plate per MIL-G-45204				
Socket & Contacts	Copper Alloy Gold Plate per MIL-G-45204				
Insulators	High Grade Plastic/Epoxy				
Seal & Grommet	Silicon Base Elastomer				

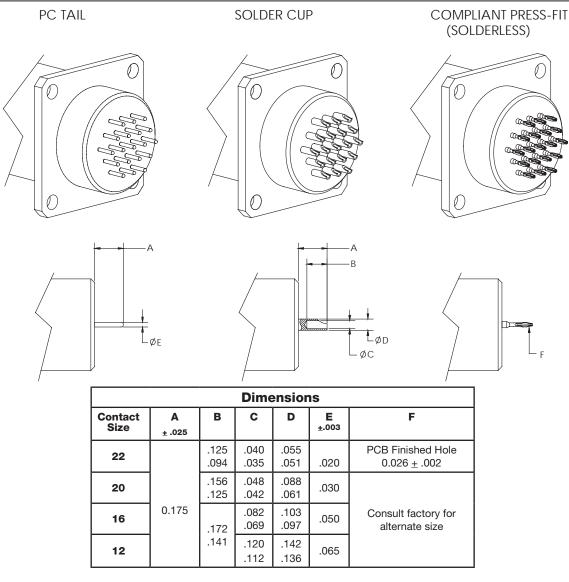
Production A	utomation Test Sy	stem Measur	ements
	Range	Accuracy	Notes
Capacitance	1 pF-1μf	0.2% + 0.1 pf	1
DF	0.00001-10	1%	2
Inductance	100 nH-10KH	0.2%+10 nH	1
IR	1 K Ohm - 5 T Ohm	1%	3,4,5
DWV	10 pA-100 mA	1%+10 pA	3,4,6
VR	10 mV-100V	0.2% + 10 mV	7
Ground & Contact Resistance	0.1 mV-1V	0.1%+0.1 mV	7

Notes:

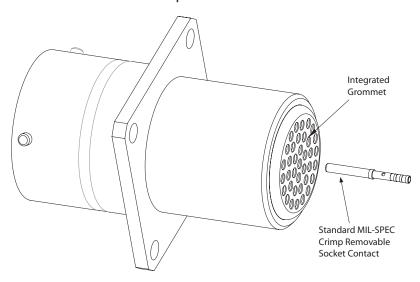
- 1. Frequency = 20 Hz to 1 MHz
- 2. Dissipation factor
- 3. With 5-500 volts applied
- 4. Measures each pin to all other pins grounded to shell
- 5. Insulation resistance
- 6. Dielectric withstanding voltage
- 7. Isource = 1nA-1A

Performance Data

Sabritec's Filter Connectors meet or exceed the applicable requirements of the following specifications:


MIL-DTL-38999	MIL-C-26482
MIL-DTL-83723	MIL-DTL-26500
MIL-DTL-24308	MIL-DTL-83723
MIL-DTL-83513	MIL-C-81511
MIL-DTL-83527	ARINC 600

ARINC 404 (MIL-C-81659)

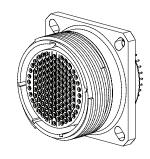

Sabritec connectors can meet qualification requirements of MIL-DTL-38999, MIL-C-26482, ARINC 404 (MIL-C-81659), and ARINC 600. Sabritec can perform most test requirements in-house. This includes both electrical and mechanical testing for qualification, engineering evaluation and final acceptance. All products are available for space grade applications.

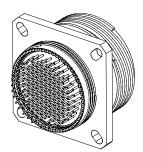
All specifications subject to change without notice.

Contact Termination

Crimp / Removable*

^{*} Add 0.700" to overall length for crimp removable connector with integrated grommet.




ESD Connectors & Composite Connectors

Sabritec's ESD Connector line is available for circular, rack and panel (ARINC), and D-Sub receptacles. These connectors offer the utmost protection against EMI and ESD environments. ESD connectors have a faraday cage which protects the components inside the connector from electrostatic discharges. The composite material shell is able to resist severe corrosion up to 2000 hours of salt spray and helps increase durability (up to 1500 cycles). ESD connectors meet protection requirements of IEC 801-2 and MIL-STD-1686.

Material and Finishes						
Shell	Composite Material					
Insulator	High grade plastic/epoxy					
Contacts	Copper alloy, gold plate					
Grommet & Seal	Silicon base elastomer					
Ground Plane	Aluminum Nickel					
Capacitor	Barium Titanate					
Inductor	Ferrite bead					

COMPOSITE CONNECTORS

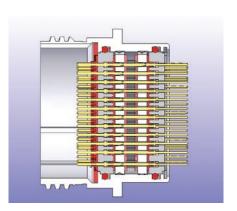
Sabritec's filter composite connectors are available for the MIL-DTL-38999 circular connector series. The filter composite materials can resist severe corrosion of up to 2000 hrs of salt spray. Using composite filter connectors can help increase durability up to 1500 cycles. Filter composite connectors have magnetic permeability that meet all MIL-DTL-38999 requirements. These connectors are ideal for power management systems, video processing equipment, and military fighter jets.

Filter connectors are also available with transient and EMI suppression. These connectors conform to the applicable military specifications and standards for materials and mechanical form, fit, and function. All Sabritec filter connectors can mate with non-filter connectors and in most cases are interchangeable.

Crimp Removable Composite Filter Connector

Features:

- All shell sizes and contact layouts for MIL-DTL-38999 series
- Composite materials resist severe corrosion up to 2000 hrs of salt spray
- Nickel, electroless nickel and cadmium plated versions
- Increased durability (up to 1500 cycles) with composite materials
- Magnetic permeability meets all MIL-DTL-38999 requirements

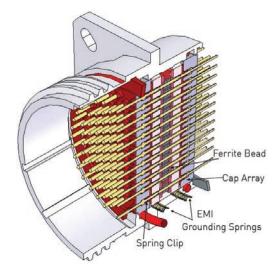


RoHS Compliant Solderless Filter Connectors

Sabritec has developed a new series of filtered connectors that are capable of providing exceptional low pass filtering and effective insertion loss without the use of soldered components.

Sabritec has qualified the solderless filter connector design to the applicable requirements listed in MIL-DTL-38999. For the qualification test report summary, please visit the technical notes section of our website.

Solderless filter connectors contain a specially designed contact clip to make the connection from the signal/power contact to the capacitor array. An EMI ground spring provides a low resistance path between the capacitor array and connector shell. These connectors meet the same stringent electrical and mechanical requirements of soldered type filter connectors. A uniquely designed seal allows for water wash immersion of the connector in the unmated condition.



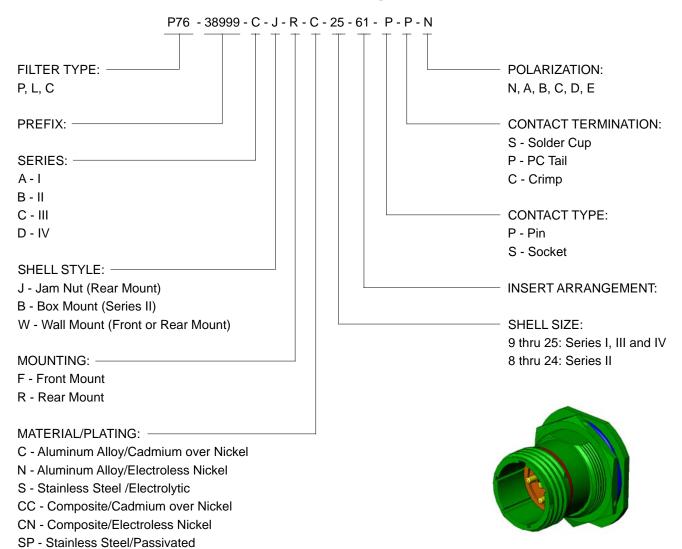
Benefits of Solderless Filter Technology


- RoHS Compliant
- No Solder design (not potted)
- Reworkable filter module assembly
- Modular construction
- High temperature lead free solder tolerant
- Qualification data available upon request

Material and Finishes								
Connector Shell	Aluminum alloy/Steel/Composite							
Insulator	High grade plastic/epoxy							
Contacts	Copper alloy, gold plate							
Grommet & Seal	Silicon base elastomer							
Jam Nut (if used)	Aluminum alloy							
Capacitor	Barium Titanate							
Inductor	Ferrite bead							

Solderless Filter Assembly

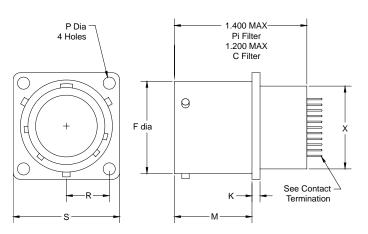
Solder Filter Assembly


MIL-DTL-38999 Connectors

MIL-DTL-38999 filter connectors are designed to meet or exceed all applicable requirements of Series I, II, III and IV. Filter connectors are intermateable and interchangeable with the standard non-filtered connectors.

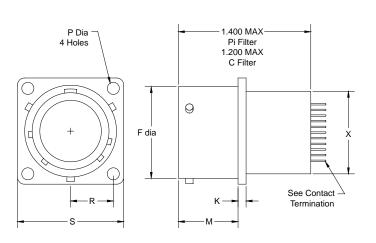
Material and Finishes							
Shell	Aluminum alloy/Steel/Composite						
Insulator	High grade plastic/epoxy						
Contacts	Copper alloy, gold plate						
Grommet & Seal	Silicon base elastomer						
Jam Nut	Aluminum alloy						
Ground Plane	Brass, silver plate						
Capacitor	Barium Titanate						
Inductor	Ferrite bead						

Part Number Description Code

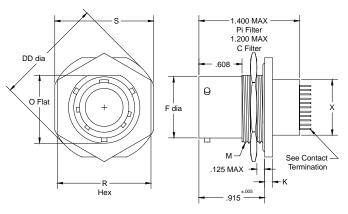

Sabritec provides specialty, enhanced performance connectors and cable assemblies and as such does not currently offer circular, rack and panel, or D-subminiature connectors that are listed on military standard Qualified Products Lists (QPL) per applicable detail specification sheets. Sabritec's connectors are fully intermateable with applicable QPL products and meet the applicable requirements of all military standards listed in this catalog.

(Consult factory for alternate plating options)

MIL-DTL-38999 Series I



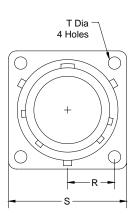
MS27505 Square Flange Receptacle Rear Mount

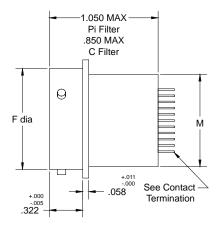

	Dimensions																					
Shell Size	F <u>+</u> .001 005	K <u>+</u> .015 000	M ± .000 005	P Dia <u>+</u> .010 005	R BSC	S ± .020	X Max. Dia															
9	0.572				0.3595	0.938	.500															
11	.700																	ĺ			0.406	1.031
13	.850	0.085	0.820		0.453	1.125	.740															
15	.975				0.020	0.020	0.020	0.020	0.128	0.4845	1.219	.890										
17	1.100																	0.531	1.312	1.000		
19	1.207						0.578	1.438	1.120													
21	1.332	0.115			0.625	1.562	1.250															
23	1.457	0.115	0.790	0.147	0.6875	1.688	1.390															
25	1.582						0.147	.750	1.812	1.500												

MS27466 Square Flange Receptacle Front Mount

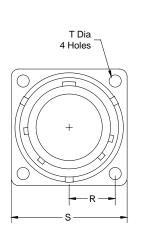
	Dimensions																																											
Shell Size	F <u>+</u> .001 005	K <u>+</u> .015 000	M ± .000 005	P Dia <u>+</u> .010 005	R BSC	S ± .020	X Max. Dia																																					
9	0.572				0.3595	0.938	.500																																					
11	.700			0.632											0.406	1.031	.620																											
13	.850	0.085	0.085			0.453	1.125	.740																																				
15	.975				0.002	0.128	0.4845	1.219	.890																																			
17	1.100																																										0.531	1.312
19	1.207				0.578	1.438	1.120																																					
21	1.332	0.115			0.625	1.562	1.250																																					
23	1.457	0.115	0.602	0.147	0.6875	1.688	1.390																																					
25	1.582			İ		0.147	.750	1.812	1.500																																			

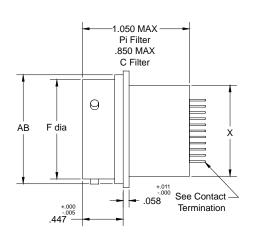
MS27468 Jam Nut Receptacle



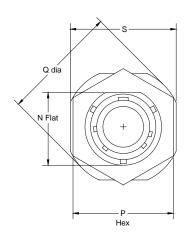

	Dimensions												
Shell Size	F ± .001 005	K ± .015 000	M Thread	O Flat ± .000 010	R Hex ± .017 016	S <u>+</u> .016	X Max. Dia	DD <u>+</u> .016					
9	0.572		.6875-24	.655	.875	1.062	.500	1.188					
11	.700		.8125-20	.755	1.000	1.250	.620	1.375					
13	.850	0.085	1.000-20	.942	1.188	1.375	.740	1.5					
15	.975		1.125-18	1.066	1.312	1.500	.890	1.625					
17	1.100		1.250-18	1.191	1.438	1.625	1.000	1.75					
19	1.207		1.375-18	1.316	1.562	1.812	1.120	1.938					
21	1.332	0.115	1.500-18	1.441	1.688	1.938	1.250	2.062					
23	1.457	0.115	1.625-18	1.566	1.812	2.062	1.390	2.188					
25	1.582		1.750-18	1.691	2.000	2.188	1.500	2.312					

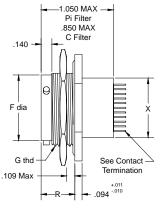
MIL-DTL-38999 Series II


MS27508 Square Flange Receptacle Rear Mount



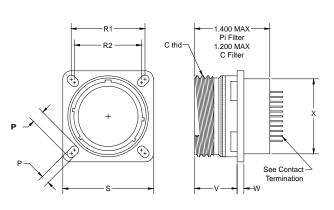
	Dimensions											
Shell Size	F <u>+</u> .001 005	T <u>+</u> .010 005	R BSC	\$ ±.020	X Max. Dia							
8	0.473		0.297	0.828	0.5							
10	0.59		0.3595	0.954	0.62							
12	0.75		0.406	1.047	0.74							
14	0.875	0.12	0.453	1.141	0.89							
16	1.000	0.12	0.4845	1.234	1							
18	1.125		0.531	1.328	1.12							
20	1.25		0.578	1.453	1.25							
22	1.375		0.625	1.578	1.39							
24	1.5	0.147	0.6875	1.703	1.5							


MS27499 Square Flange Receptacle Front Mount

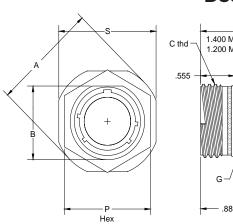


	Dimensions											
Shell Size	F <u>+</u> .001 005	T <u>+</u> .010 005	R BSC	S <u>Max</u>	X Max	AB Max						
8	0.473		0.297	0.828	0.500	0.547						
10	0.590		0.360	0.954	0.620	0.672						
12	0.750		0.406	1.047	0.740	0.844						
14	0.875	0.120	0.453	1.141	0.890	0.969						
16	1.000	0.120	0.485	1.234	1.000	1.094						
18	1.125		0.531	1.328	1.120	1.219						
20	1.250		0.578	1.453	1.250	1.344						
22	1.375		0.625	1.578	1.390	1.469						
24	1.500	0.147	0.688	1.703	1.500	1.594						

MS27474 Jam Nut Receptacle

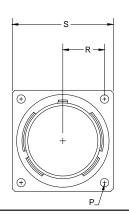


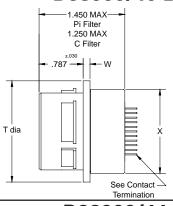
	Dimensions											
Shell Size	F <u>+</u> .001 005	N + .001 006	G Thread	P Hex + .017 016	Q + .016	\$ +.016	X Max. Dia	R ± .005				
8	.473	.817	.875-20	1.062	1.375	1.250	.500					
10	.590	.941	1.000-20	1.188	1.5	1.375	.620					
12	.750	1.065	1.125-18	1.312	1.625	1.500	.740	0.438				
14	.875	1.190	1.250-18	1.438	1.75	1.625	.890	0.436				
16	1.000	1.320	1.375-18	1.562	1.938	1.781	1.000					
18	1.125	1.440	1.500-18	1.688	2.016	1.890	1.120					
20	1.250	1.565	1.625-18	1.812	2.141	2.016	1.250					
22	1.375	1.690	1.750-18	2.000	2.265	2.140	1.390	0.464				
24	1.500	1.815	1.875-16	2.125	2.39	2.265	1.500					


MIL-DTL-38999 Series III & IV

D38999/20 Box Mount Receptacle

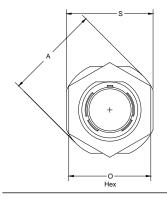
	Dimensions												
Shell Size	C Thread .1 Pitch .3 Lead	P ± .008	R1 BSC	R2 BSC	V Max	W Max	X Max	PP Max <u>+</u> .008	\$ + .012				
9	0.625		.719	.564			.500		.937				
11	.750		.812	.719			.620		1.031				
13	.875	0.128	.906	.812	.820	.098	.740	.194	1.126				
15	1.000	0.120	.969	.906	.020		.890		1.220				
17	1.188		1.062	.969			1.000	1.000		1.311			
19	1.250		1.156	1.062			1.120		1.437				
21	1.375		1.250	1.156			1.250		1.563				
23	1.500	0.154	1.375	1.250	.790	.126	1.390	.242	1.689				
25	1.625		1.500	1.375			1.500	.242	1.811				

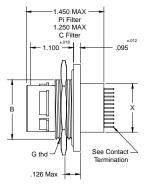

D38999/24 Jam Nut Receptacle



C thd — 1.400 MAX Pi Filter 1.200 MAX C Filter	
	dee Contact Termination .126 MAX

	Dimensions												
Shell Size	A <u>+</u> .012	B + .004 006	C Thread .1 Pitch .3 Lead	G Thread 6g .10R	P Hex	\$ <u>+</u> .015	W +.028 004	X Max					
9	1.189	.651	.625	M17X1	.945 .912	1.063		.500					
11	1.374	.751	.750	M20x1	1.062 .0983	1.252	.087	.620					
13	1.500	.938	.875	M25x1	1.260 1.234	1.374	.067	.740					
15	1.625	1.062	1.000	M28x1	1.456 1.424	1.500		.890					
17	1.812	1.187	1.1875	M32x1	1.614 1.581	1.626		1.000					
19	1.938	1.312	1.250	M35x1	1.811 1.781	1.811		1.120					
21	2.062	1.437	1.375	M38x1		1.937	.118	1.250					
23	2.188	1.562	1.500	M41x1	1.968 1.938	2.063	.116	1.390					
25	2.312	1.687	1.625	M44x1		2.189		1.500					


D38999/40 Box Mount Receptacle



	Dimensions							
Shell Size	T <u>+</u> .008	W <u>+</u> .010	P ± .008	R BSC	S <u>+</u> .021	X Max		
11	0.786			0.406	1.029	0.620		
13	0.912			0.453	1.124	0.740		
15	1.036	0.093	0.139	0.485	1.218	0.890		
17	1.162			0.139	0.139	0.531	1.312	1.000
19	1.286			0.578	1.439	1.120		
21	1.412			0.625	1.561	1.250		
23	1.536	0.124	0.150	0.688	1.706	1.390		
25	1.662		0.150	0.750	1.813	1.500		

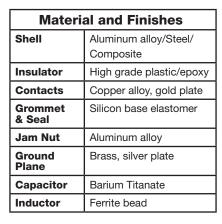
D38999/44 Jam Nut Receptacle

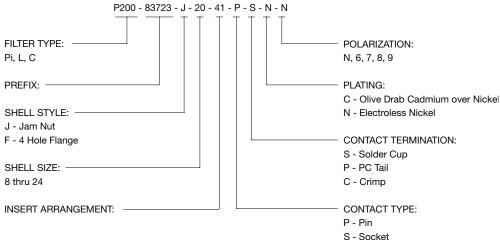
	Dimensions							
Shell Size	B Flat ±.004	G THD 6g 0.1R	A Dia. <u>+</u> .020	O Hex <u>+</u> .013	\$ <u>+</u> .020	X Max		
11	0.938	M25x1	1.500	1.250	1.374	0.620		
13	1.062	M28x1	1.622	1.405	1.5	0.740		
15	1.1875	M31x1	1.749	1.600	1.622	0.890		
17	1.318	M34x1	1.937	1.000	1.78	1.000		
19	1.4375	M38x1	2.015	1.796	1.89	1.120		
21	1.562	M41x1	2.138	1.954	2.016	1.250		
23	1.6875	M44x1	2.268	1.954	2.138	1.390		
25	1.812	M47x1	2.390	2.141	2.264	1.500		

MIL-DTL-38999 Insert Arrangements

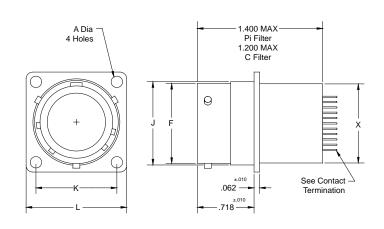
^{*} Odd Numbered Shell Sizes Series I, III & IV, Even Numbered Shell Sizes Series II

MIL-DTL-83723 Series III / MIL-DTL-26500

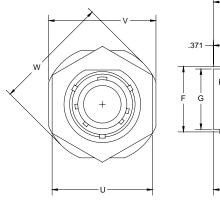


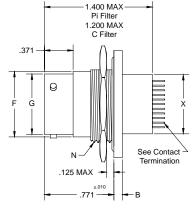

MIL-DTL-83723 Series III / MIL-DTL-26500 filter connectors are designed to meet or exceed all applicable requirements of the military specifications. The filter connectors are intermateable and interchangeable with the standard non-filtered connectors.

Type T


Type B

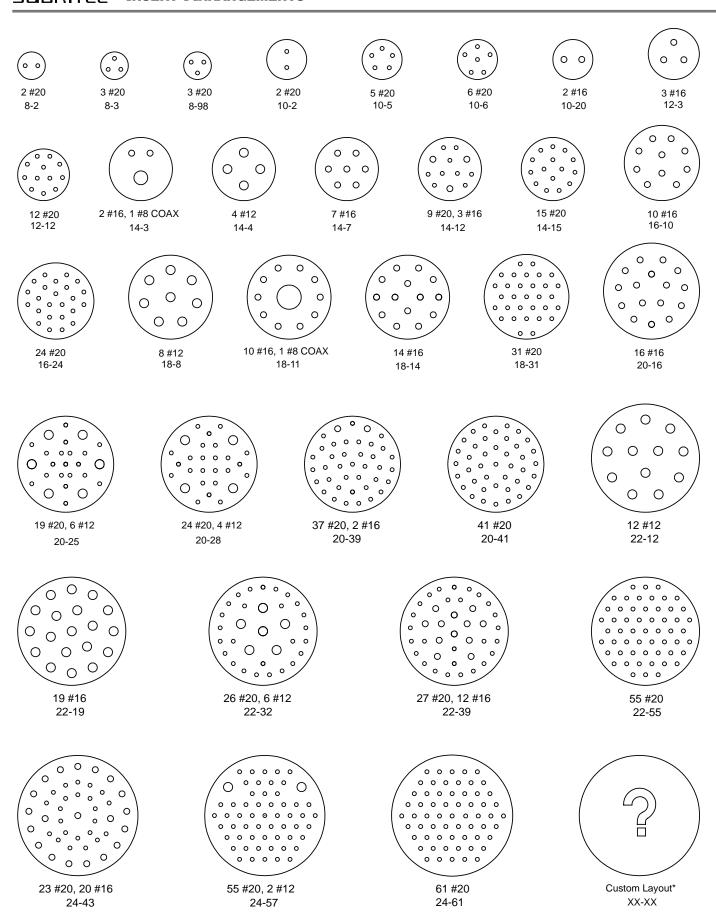
Part Number Description Code




Square Flange Receptacle - Type B

DIMENSIONS						
Shell Size	A Max	K BSC	L	J Dia	F Dia	X Max Dia
8	.120	.594	.812	.561	.536 .531	.500
10	.120	.719	.937	.696	.659 .654	.620
12	.120	.812	1.031	.875	.829 .824	.740
14	.120	.906	1.125	.925	.898 .893	.890
16	.120	.969	1.250	1.062	1.025 1.020	1.000
18	.120	1.062	1.343	1.187	1.131 1.126	1.120
20	.120	1.156	1.437	1.312	1.256 1.251	1.250
22	.120	1.250	1.562	1.437	1.381 1.376	1.390
24	.149	1.375	1.703	1.562	1.506 1.501	1.500

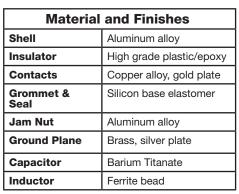
Jam Nut Receptacle - Type B

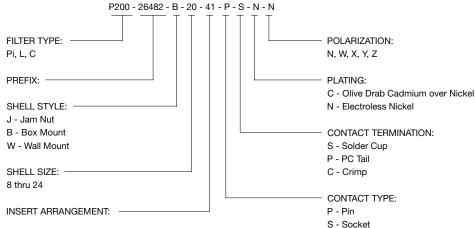


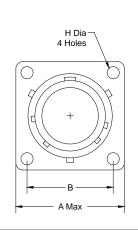
	DIMENSIONS							
Shell Size	В	F Dia	G Dia	N Thrd	U	٧	W	Х
8	.137 .097	.561	.536 .531	.625-20	.670	.979	1.068	.500
10	.137 .097	.696	.659 .654	.750-20	.796	1.104	1.192	.620
12	.113 .097	.875	.829 .824	.9375-20	.984	1.291	1.380	.740
14	.137 .097	.935	.898 .893	1.000-20	1.046	1.391	1.505	.890
16	.137 .097	1.062	1.025 1.020	1.125-20	1.171	1.516	1.630	1.00
18	.137 .097	1.187	1.131 1.126	1.250-18	1.296	1.641	1.756	1.120
20	.137 .097	1.312	1.256 1.251	1.375-18	1.484	1.766	1.860	1.250
22	.168 .128	1.437	1.381 1.376	1.500-18	1.609	1.954	2.068	1.390
24	.168 .128	1.562	1.506 1.501	1.625-18	1.734	2.079	2.160	1.500

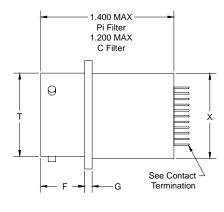
MIL-DTL-83723 Series III / MIL-DTL-26500

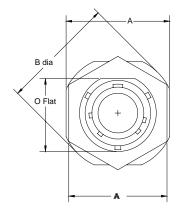
INSERT ARRANGEMENTS

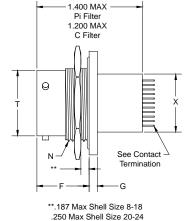



MIL-C-26482 Series II MIL-DTL-83723 Series I


MIL-C-26482 Series II / MIL-DTL-83723 Series I filter connectors are designed to meet or exceed all applicable requirements of the military specifications. The filter connectors are intermateable and interchangeable with the standard non-filtered connectors.


Part Number Description Code


MS3470 Square Flange Receptacle



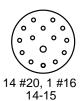
	DIMENSIONS						
Shell Size	A Max	B BSC	F	G Dia	H Dia	T Max	X Max Dia
8	.828	.594				.474 .468	.500
10	.954	.719				.591 .585	.620
12	1.047	.812	.462	.078		.751 .745	.740
14	1.141	.906	.431	.046	.120	.876 .870	.890
16	1.231	.969			.120	1.001 .995	1.000
18	1.328	1.062				1.126 1.120	1.120
20	1.458	1.156	.587	.110		1.251 1.245	1.250
22	1.578	1.250	.556	.110		1.376 1.370	1.390
24	1.703	1.375	.620 .589	.078	.147	1.501 1.495	1.500

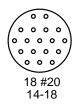
MS3474 Jam Nut Receptacle

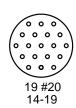
DIMENSIONS										
Shell Size	A Max	B Dia.	F	G Dia	N	0 1.005 Flat	T Dia.	X Max Dia	AA Hex Dia	
8	.954 .923	1.078 1.047			.5625-24	.525	4.74 4.68	.500	0.767	
10	1.078 1.047	1.203 1.172			.6875-24	.650	.591 .585	.620	0.892	
12	1.266 1.235	1.391 1.360	.707	.113	.875-20	.813	.751 .745	.740	1.079	
14	1.391 1.360	1.516 1.485	.658	.086	1.000-20	.937	.876 .870	.890	1.205	
16	1.516 1.485	1.641 1.610				1.125-18	1.061	1.001 .995	1.000	1.329
18	1.641 1.610	1.766 1.735			1.120-18	1.166	1.126 1.120	1.120	1.455	
20	1.828 .797	1.954 1.923			1.375-18	1.311	1.251 1.245	1.250	1.579	
22	1.954 1.923	2.078 2.047	.772 .721		1.500-18	1.436	1.376 1.370	1.390	1.705	
24	2.078 2.047	2.203 2.172			1.625-18	1.561	1.501 1.495	1.500	1.829	

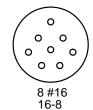
MIL-C-26482 / MIL-DTL-83723

Insert Arrangements

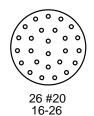

0 0 0 3 #16 12-3

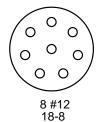


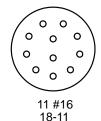


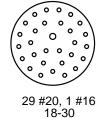


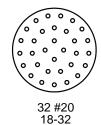


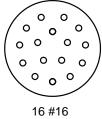


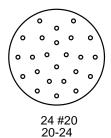


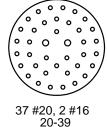


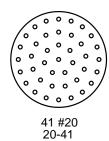


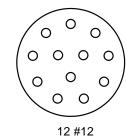


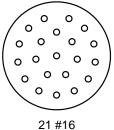


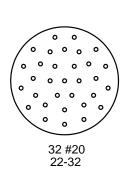


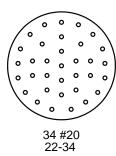


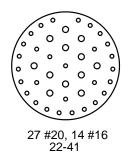


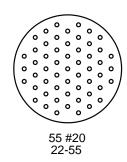


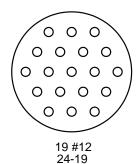


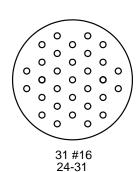


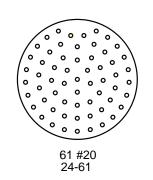

22-12



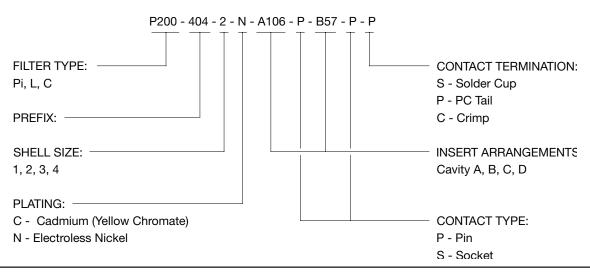

22-21

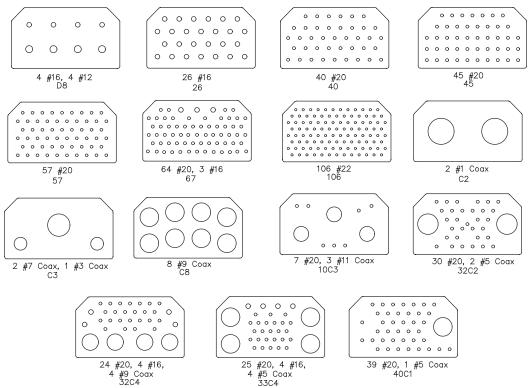






ARINC 404


MIL-C-81659


Sabritec's ARINC 404 filter connectors are designed to meet or exceed all applicable requirements of the military specification. These connectors are intermateable and interchangeable with the standard non-filtered connectors.

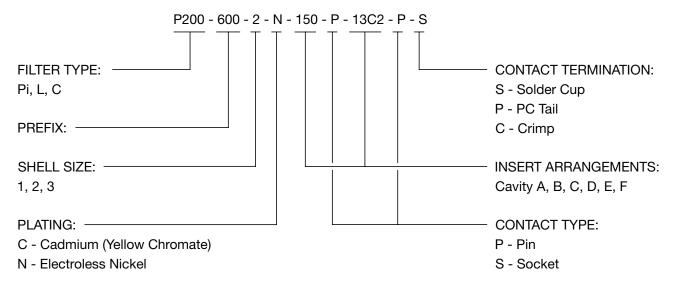
Material and Finishes				
Shell	Aluminum alloy/Steel/Composite			
Insulator	High grade plastic/epoxy			
Contacts	Copper alloy, gold plate			
Grommet & Seal	Silicon base elastomer			
Ground Plane	Beryllium copper, silver plate			
Capacitor	Barium Titanate			
Inductor	Ferrite bead			

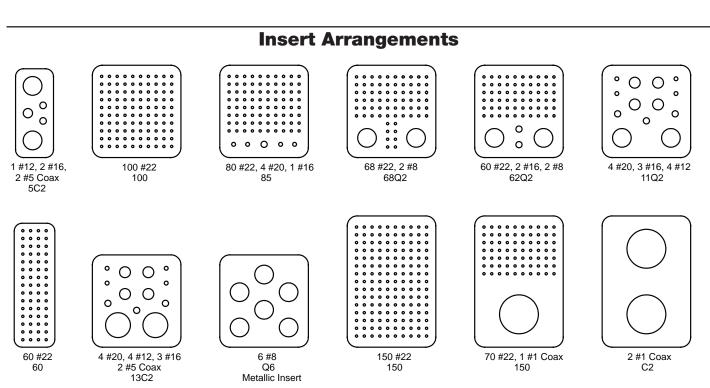
Part Number Description Code

Insert Arrangements

Shell Size 1 Shell Size 2 -1.450 MAX-Pi Filter 1.380 MAX C Filter (2.000) (2.000)(1.750)-(.060) (1.750)-(.060) 0 O TOP O O TOP (1.720)(2.012)(1.405)(3.075) (2.783)(2.468)-(.125) (1.437) (0) 0 **-**(.125) (1.437) **Shell Size 3 Shell Size 4** -1.450 MAX -Pi Filter 1.380 MAX C Filter (2.000)-(.060) -1.450 MAX Pi Filter 1.380 MAX C Filter ◎ TOP ◎ (.060) 0 0 ⊚ TOP ⊚ SABRITEC (4.024) (4.318) (3.711) (1) (2.783) (3.110) (2.468) -(.930)-**-**(.125) 0 (.125)

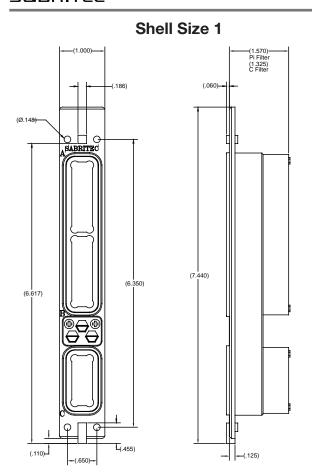
ARINC 600

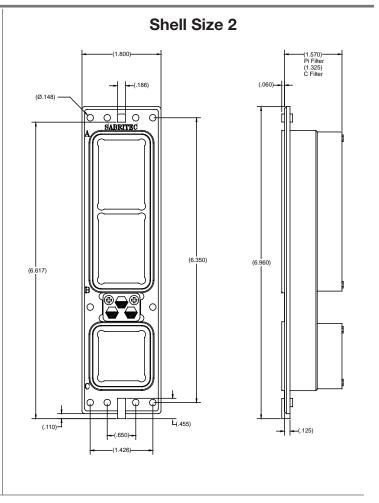


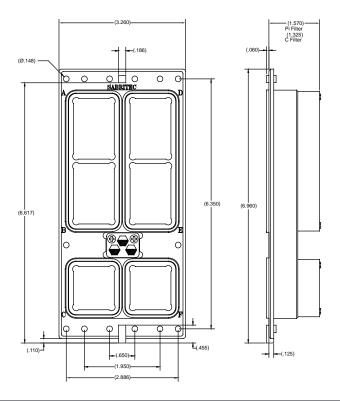

ARINC 600 filter connectors are designed to meet or exceed all applicable requirements of the specification. These connectors are intermateable and interchangeable with the standard non-filtered connectors.

Material and Finishes				
Shell	Aluminum alloy			
Insulator	High grade plastic/epoxy			
Contacts	Copper alloy, gold plate			
Grommet & Seal	Silicon base elastomer			
Ground Plane	Brass, Silver Plate			
Capacitor	Barium Titanate			
Inductor	Ferrite bead			

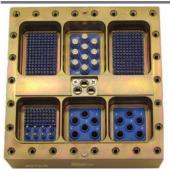
Part Number Description Code





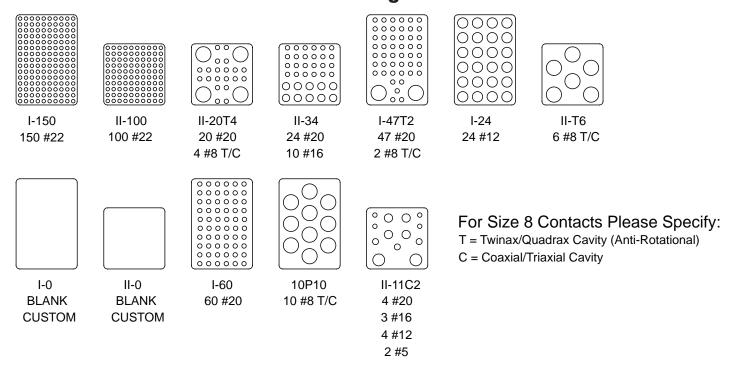

ARINC 600

Shell Sizes 1-3



Shell Size 3

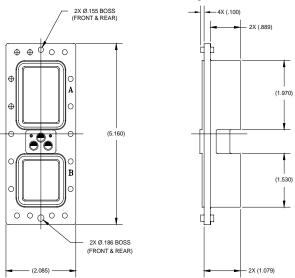
MIL-DTL-83527

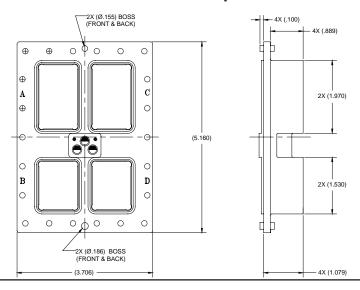


MIL-DTL-83527 connectors are designed to meet or exceed all applicable requirements of the military specification. These connectors come standard with anti-rotational keyed insert assemblies for filter, high-speed fibre channel or Ethernet twinax and quadrax contacts. Offered in a number of different contact arrangements and shell sizes, these connectors are intermateable and interchangeable with the standard non-filtered MIL-DTL-83527 connectors.

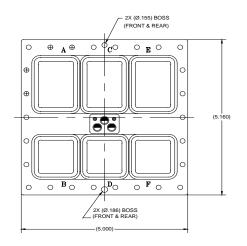
Part Number Description Code

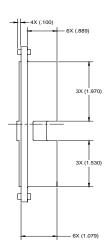
Insert Arrangements




MIL-DTL-83527 Connectors

Receptacle Shell Sizes 2-4


Shell Size 2 Receptacle



Shell Size 3 Receptacle

Shell Size 4 Receptacle

MIL-DTL-24308 D-Subminiature Connectors

MIL-DTL-24308 D-Subminiature filter connectors are designed to meet or exceed all applicable requirements of the military specification. These connectors are intermateable and interchangeable with the standard non-filtered connectors. Sabritec also offers combo D-Sub arrangements for power coaxial and signal contacts mixed arrangements. These layouts include 5W5, 8W8, 17W2, 9W1 and 24W7.

Insert Arrangements

IIIOCI I AI	angemente
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 #20	15 #22
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 #20	26 #22

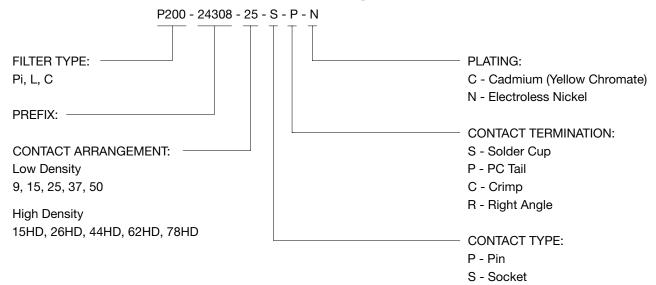
Material and Finishes				
Aluminum alloy/Steel/Composite				
High grade plastic/epoxy				
Copper alloy, gold plate				
Silicon base elastomer				
Barium Titanate				
Ferrite bead				

25 #20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

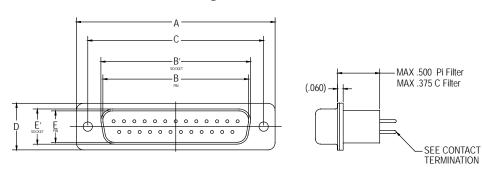
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 #20

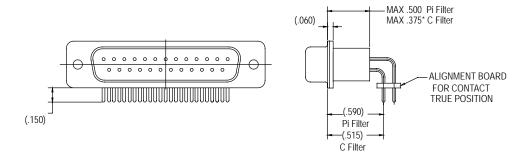

50 #20

62 #22

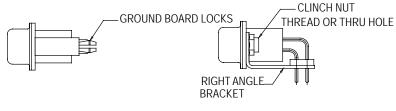
78 #22

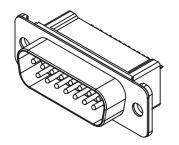

Consult Factory for Combo D-Sub Arrangements.

Part Number Description Code



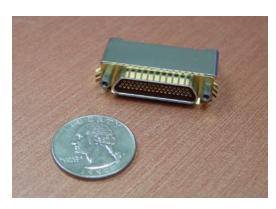
MIL-DTL-24308 D-Subminiature


Straight D-Subminiature


Right Angle D-Subminiature

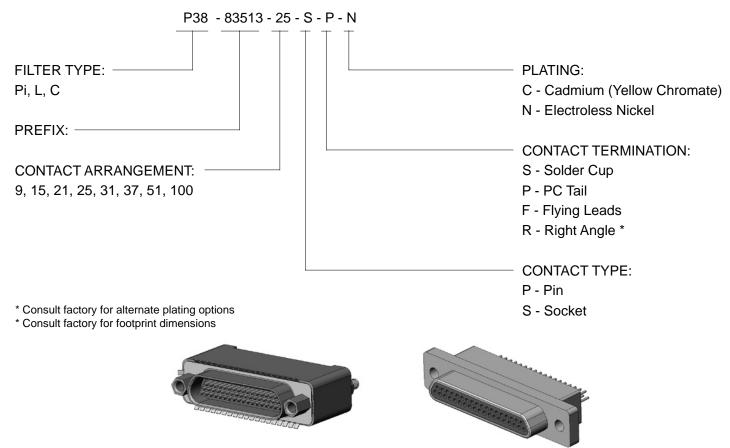
Optional Hardware

Straight Right Angle

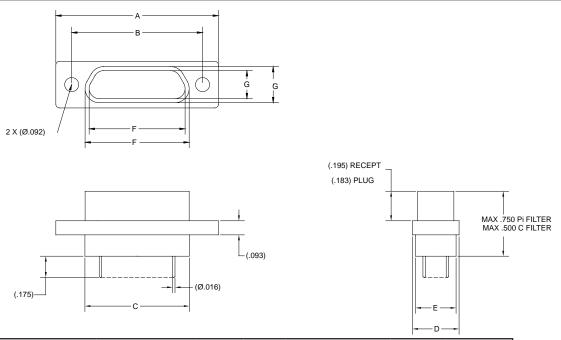


	Dimensions								
Shell Size	Standard Layout Size 20	A <u>+</u> 0.015	B (Pin) <u>+</u> 0.005	B' (Socket) <u>+</u> 0.005	C Basic	D ± 0.010	E (Pin) ± 0.005	E' (Socket) <u>+</u> 0.005	
E	9 Contact	1.213	.667	.642	.984	.494	.330	.310	
Α	15 Contact	1.541	.995	.970	1.312	.494	.330	.310	
В	25 Contact	2.088	1.535	1.150	1.852	.494	.330	.310	
С	37 Contact	2.729	2.183	2.158	2.500	.494	.330	.310	
D	50 Contact	2.635	2.063	2.063	2.406	.605	.437	.422	

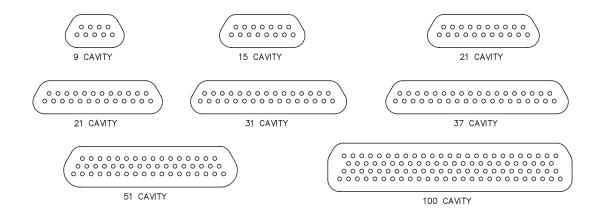
MIL-DTL-83513 Microminiature D



MIL-DTL-83513 Micro-D filter connectors are designed to meet or exceed all applicable requirements of the military specification. These connectors are intermateable and interchangeable with the standard non-filtered connectors. Unique configurations are also available with customized shells and EMI ground springs.


Material and Finishes				
Shell	Aluminum alloy			
Insulator	High grade plastic/epoxy			
Contacts	Copper alloy, gold plate			
Grommet & Seal	Silicon base elastomer			
Capacitor	Barium Titanate			
Inductor	Ferrite bead			

Part Number Description Code



MIL-DTL-83513 Microminiature D

	Dimensions								
Cavity	A <u>+</u> .010	B Basic	C + .010 018	D ± .010	E Max	F Basic Recept	F' Basic Plug	G Basic Recept	G' Basic Plug
9	.775	.565	.390	.298	.270	.3342	.338	.1852	.1848
15	.925	.715	.540	.298	.270	.4842	.4838	.1852	.1848
21	1.075	.865	.690	.298	.270	.6342	.6338	.1852	.1848
25	1.175	.956	.790	.298	.270	.7342	.7338	.1852	.1848
31	1.325	1.115	.940	.298	.270	.8842	.8838	.1852	.1848
37	1.475	1.265	1.090	.298	.270	1.0342	1.0338	.1852	.1848
51	1.425	1.215	1.040	.341	.310	.9842	.9838	.2282	.2278
100	2.160	1.800	1.432	.384	.360	1.3842	1.3838	.2712	.2708

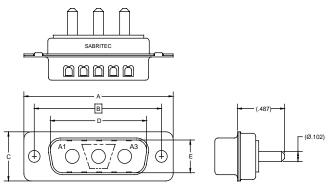
Insert Arrangements

* Consult Factory For Additional or Custom Layouts

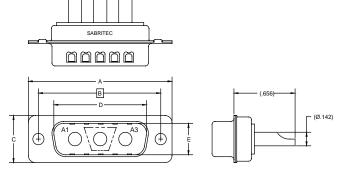
_5

Filter D-Sub Connectors

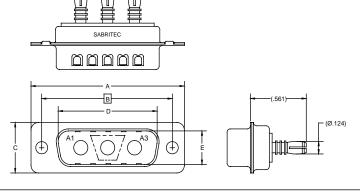
High Power Filter Combo D-Subminiature Connectors



Combo D-Sub 3W3/3WK3 Filtered Power Connectors


Sabritec offers a complete line of high powered EMI filtered D-Sub connectors including the single row size #8 power contacts (3W3, 3WK3, etc.). With the addition of Sabritec's in-house production of ceramic planar capacitors, we can easily achieve up to 47 nF per line on this series. The planar capacitor provides excellent attenuation as well as meeting the Bellcore requirements for 1000 VDC Dielectric Withstanding Voltage. The materials used in the construction meet the UL flammability requirements of 94V-0. Sabritec's filtered D-Sub connectors are intermateable with standard non-filter D-Sub connectors.

This series is available in PC tail, solder cup and solderless press-fit terminations into standard plated-thru holes. Sabritec also offers combo D-Sub arrangements for power coaxial and signal contacts mixed arrangements including layouts 5W5, 8W8, 17W2, 9W1 and 24W7.


PC Tail

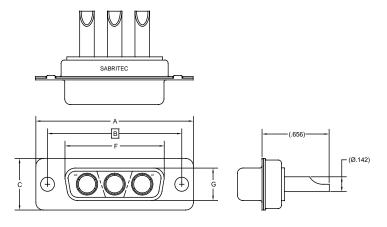
Solder Cup

Press-Fit

D-Sub High Power Plugs

Sabritec	EMI Fil	ter	Voltage Rating	
Part Number	Cap Value	Layout	Voltage hatting	
310031-1000	1 nF	3W3	400 VDC	
310032-1001	1 nF	3WK3	400 VDC	
310031-1002	5 nF	3W3	400 VDC	
310032-1003	5 nF	3WK3	400 VDC	
310031-1004	47 nF	3W3	400 VDC	
310032-1005	47 nF	3WK3	400 VDC	

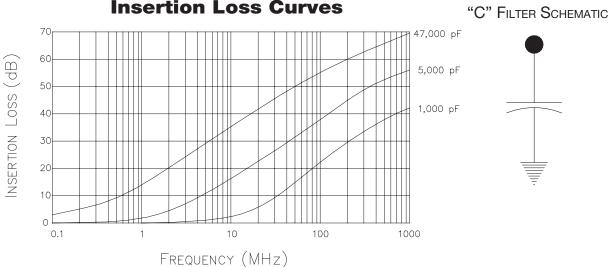
Sabritec	EMI Fil	ter	Voltage Rating	
Part Number	Cap Value	Layout		
310031-2000	1 nF	3W3	400 VDC	
310032-2001	1 nF	3WK3	400 VDC	
310031-2002	5 nF	3W3	400 VDC	
310032-2003	5 nF	3WK3	400 VDC	
310031-2004	47 nF	3W3	400 VDC	
310032-2005	47 nF	3WK3	400 VDC	


Sabritec	EMI Fil	ter	Voltore Detine	
Part Number	Cap Value	Layout	Voltage Rating	
310031-4000	1 nF	3W3	400 VDC	
310032-4001	1 nF	3WK3	400 VDC	
310031-4002	5 nF	3W3	400 VDC	
310032-4003	5 nF	3WK3	400 VDC	
310031-4004	47 nF	3W3	400 VDC	
310032-4005	47 nF	3WK3	400 VDC	

Dimensions	A	B	C	D	E	F	G
	<u>+</u> .010	Basic	±.010	±.004	±.004	±.004	±.004
	1.541	1.312	0.494	0.995	0.329	0.970	0.310

Filter D-Sub Connectors

Solder Cup

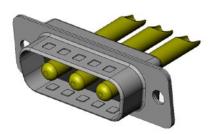


D-Sub High Power Receptacles

Sabritec	EMI Fil	ter	Voltage Rating	
Part Number	Cap Value	Layout		
310031-3000	1 nF	3W3	400 VDC	
310032-3001	1 nF	3WK3	400 VDC	
310031-3002	5 nF	3W3	400 VDC	
310032-3003	5 nF	3WK3	400 VDC	
310031-3004	47 nF	3W3	400 VDC	
310032-3005	47 nF	3WK3	400 VDC	

Dimensions	A	B	C	D	E	F	G
	<u>+</u> .010	Basic	<u>+</u> .010	±.004	±.004	<u>+</u> .004	<u>+</u> .004
	1.541	1.312	0.494	0.995	0.329	0.970	0.310

Insertion Loss Curves


Insertion Loss Table						
Frequency (MHz)	C1 (1 nF)	C5 (5 nF)	C47 (47 nF)			
1	0.1	1.4	15			
10	4	16	34			
100	22	36	52			
1000	42	56	68			

Materials and Finishes					
Shell Tin plated steel					
Insulator Thermoplastic (UL 94V-Ø rated)					
Contacts	Copper Alloy, Gold plate per ASTM-B488 over nickel plate per QQ-N-290				
Filter Array	Monolithic Capacitor, X7R Material				

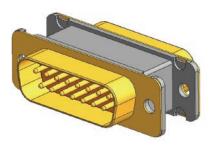
Electrical Characteristics				
Operating Temperature	-55°C to + 125°C			
Voltage	1,000 VDC DWV 400 VDC Working			
DC Current Rating	30 Amps max per contact			
Surge Voltage	1,000 Volts, 1.2 x 50µ's Waveform (12 ohms) 1,000 Volts, 8 x 20µ's Waveform (2 ohms)			
Insulation Resistance	5,000 Mega ohms @ 400 VDC			
Capacitance	1 nF, 5 nF, 47 nF, (<u>+</u> 20%)			
International Standard for EMC	Meets or exceeds EN 61000-4-5 IEC 1000-4-5			

Terminations

PC Tail Solder Cup Press Fit

Filtered Adapters

Non-filter applications can easily be upgraded to EMI/Transient protection without modification to the system with Sabritec's In–Line Filter Adapters. Filter adapters provide the system designer great flexibility in situations where the filtering or system requirements are subject to change. The adapters are designed to be installed between the existing plug and receptacle without having to re–wire or disassemble the system. Both in–line cable and bulkhead/panel mount versions are available. Adapters can be built for any connector series including MIL-DTL-38999, MIL-C-26482, MIL-DTL-83723, MIL-DTL-24308, MIL-DTL-83513, ARINC 404, and ARINC 600. Consult the factory for more information.


MIL-DTL-38999 Series I Adapter

MIL-DTL-38999 Series III Adapter

MIL-DTL-24308 D-Subminiature Adapter

Soldering Procedure Guidelines

RECOMMENDED GUIDELINES FOR CUSTOMER SOLDERING AND CLEANING OF SABRITEC EMI/EMP FILTERED CONNECTORS HAVING PC-TAIL OR SOLDER CUP TERMINATIONS

Sabritec's filter connectors are built to be rugged and able to withstand the environments they will be exposed to during their service life. However, since there are filter components inside the connectors, care should be taken during the processing of these types of products. The following is a brief overview of some general guidelines on how to handle the connectors during the soldering process.

Soldering Precautions

Preheating: It is always a good idea to preheat the connector prior to soldering to minimize subjecting the filter components to any thermal shock related to the soldering operation. We recommend preheating to 120°C - 132°C (250°F - 270°F) for five (5) minutes prior to soldering. This preheat is recommended for all soldering methods.

Hand Soldering: For solder cup arrays it is strongly recommended that the contacts be soldered in a "crisscross" pattern, alternating between central and peripheral locations as much as possible. The goal is to avoid a sustained buildup of heat in any one area of the filter assembly. Where permissible/applicable, the use of a suitable heat sink attached directly to the contact being soldered is recommended in order to reduce the amount of heat being applied to the filter assembly. In some cases there will be certain configurations and/or high-density arrays that may preclude the use of a heat sink.

Cleaning/Handling

Hand Cleaning: Sabritec recommends that cleaning after soldering not be done by immersion in a cleaning solution. After soldering, solder joints may be brush cleaned with isopropyl alcohol, preferably while holding the connector with its soldered contact array facing downward at approximately a 45° angle. Allow the isopropyl alcohol to air dry at room temperature, followed by a 70°C (158°F) oven cure for approximately two (2) hours.

Immersion/Automated Cleaning: If immersion or "auto-wash" cleaning using an aqueous pressure jet system is required, care must be taken to prevent exposure of the front end (mating side) to cleaning solutions. Please contact Sabritec for further information for any questions related to cleaning our connectors with this type of system.

Handling: Avoid severe bending or flexing of the contact terminals at the point of exit from the connector backshell or epoxy/RTV seal.

Please contact us If you have any further questions regarding how to handle or process Sabritec EMI/EMP filter connectors.