

WIMA SuperCap Presentation

BEST CAPACITORS

MADE IN GERMANY

www.wima.com

Outline

- WIMA: Specialist in Capacitors
- Introduction
- Storage Technologies
- WIMA SuperCap Range
- Technical Performance
- SuperCap Applications
- Conclusion

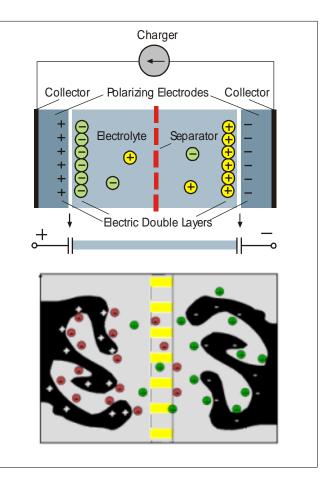
BEST CAPACITORS

MADE IN GERMANY

WIMA: Specialist in Capacitors

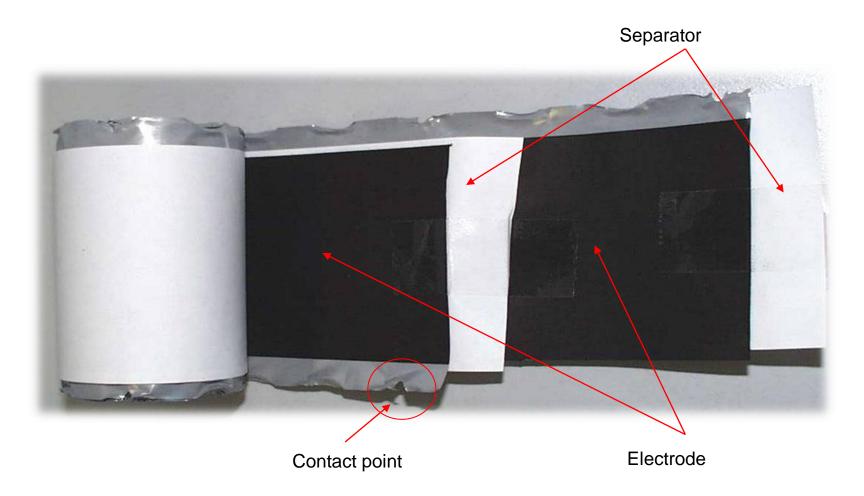
Foundation: 1948 Fields of Activities: Manufacture and sale of: Production - plastic film capacitors in Aurich SMD/through hole version and special caps - metallised paper capacitors R & D Berlin - SuperCap double-layer Production capacitors 100 % privately owned **Ownership:** Unna Wilhelm Westermann: Production 1948 - 1980 Wolfgang Westermann: 1981 - today Mannheim Production Capacity: up to 3 million pieces/day Sales Department Sites: Administration and production in Germany only

Distribution: Worldwide


Characteristics of SuperCaps (Double-Layer Capacitors)

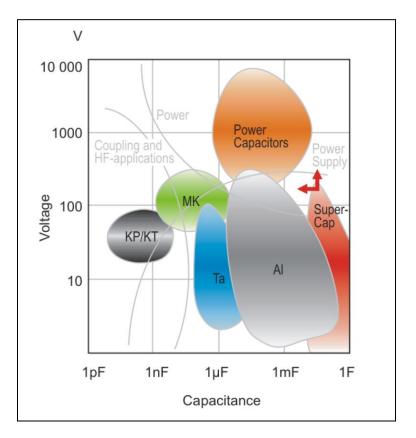
Basic characteristics:

- High volume capacity
- Extreme long life time expectation
- Maintenance-free
- Lowest internal impedance (a few mΩ only)
- No damage by deep discharging
- For power application


By using active carbon as a layer the surface of the electrodes is immense.

Dissociated molecules of the electrolyte adhere to the carbon surface with a distance of few Angström generating the double-layer.

Construction: Winding Element WIMA SuperCap C

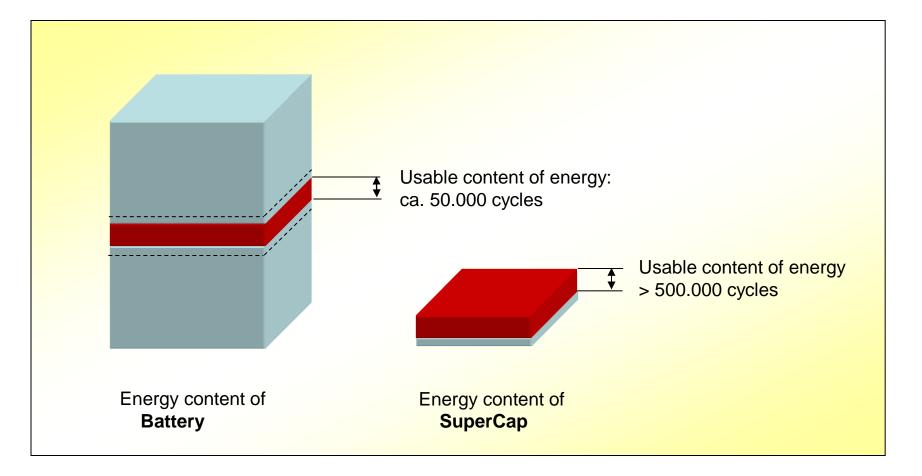


Comparison of Different Storage Media

Advantages of SuperCaps

	Standard capacitor	SuperCap	Battery	
Capacity per square	< 1 µF/cm²	1 000 000 μF (1 F / cm²)		
Density of energy	< 0.01 Wh/kg	< 10 Wh/kg	100 Wh/kg	
Density of power	< 0.1 kW/kg	> 1 kW/kg	0.1 kW/kg	

www.wima.com


Characteristics of Energy Storage Technologies

Batteries (Energy Application):	SuperCap Module (Power Application):
 Large energy density Accepted technology Low power density Temperature sensitive High internal resistance Low cycle stability High weight Limited life-time State of charge not visible High risk of damage due to over charging or deep discharge (LiPo) Possible failure mode: explosion or fire (LiPo) 	 Low internal resistance (ESR) Very high power density High cycle stability Low weight High life-time expectation, maintenance-free State of charge is measurable Minus temperature up to -30°C accepted Low energy density New technology Deep discharge without any problems Uncritical failure mode

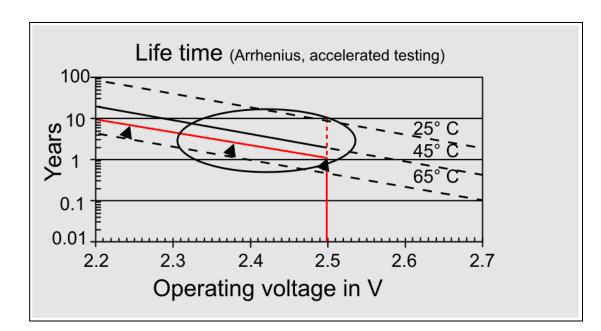
Conclusion: A SuperCap should be used as battery support rather than replacement of a battery

Comparison of Energy Storage Technologies (identical geometric volume)

www.wima.com

WIMA SuperCap Range

WIMA SuperCap Standard Portfolio


WIMA SuperCap														
	Singl	e Cells	Modules			s	Single Cells Modules							
	with cylindrical metal case	with cylindrical metal case	series connected, actively balanced				th rectangular metal case	series connected, passively or actively balanced						
	SuperCap C	SuperCap C 60	SuperCap MC Multipurpose		SuperCap MC Powerblock			Sı	uperCap R	SuperCap MR Powerpack				
Dielectric	Electric Double- Layer	Electric Double- Layer	Electric Double- Layer		Electric Double-Layer			Ele	ectric Double- Layer	Electric Double-Layer			Dielectric	
Rated current	30 A to 1000 A	84 A to 130 A	400 A to 650 A		400 A to 1000 A			3	0 A to 800 A	50 A to 800 A			Rated current	
Pulse current	up to 5000 A	up to 2200 A	up to 2500 A		up to 5000 A			u	p to 3000 A	up to 3000 A			Pulse current	
Operating temperature range	-30°C to +65°C	-30°C to +65°C	-30°C to +65°C		-30°C to +65°C			-3	0°C to +65°C	-30°C to +65°C		Operating temperature range		
Max. stored energy (+20°C):	up to 18 kJ	up to 11 kJ	up to 22 kJ		up to 330 kJ			1	up to 10 kJ	up to 70 kJ		Max. stored energy (+20°C):		
Voltage VDC	2.5	2.7	14	28	14	28	56	112		2.5	5	14	16	Voltage VDC
	110 F	1500 F		55 F	110	55	28	12		100 F	100 F	100 F		
	200 F	2000 F	110 F		200	100	50	24		200 F			450 F	
	600 F	3000 F	200 F additional custom-made		420	230	115			300 F	-			
	1200 F				840 420 210 additional				400 F	additional			Capacitance	
Capacitance	2700 F 5000 F								600 F 3000 F					
	6500 F										custom-made solutions			
	solutions cus on request		custom-made solutions on request					on request						
	SuperCap Type C SuperCap Type R													

BEST CAPACITORS

MADE IN GERMANY

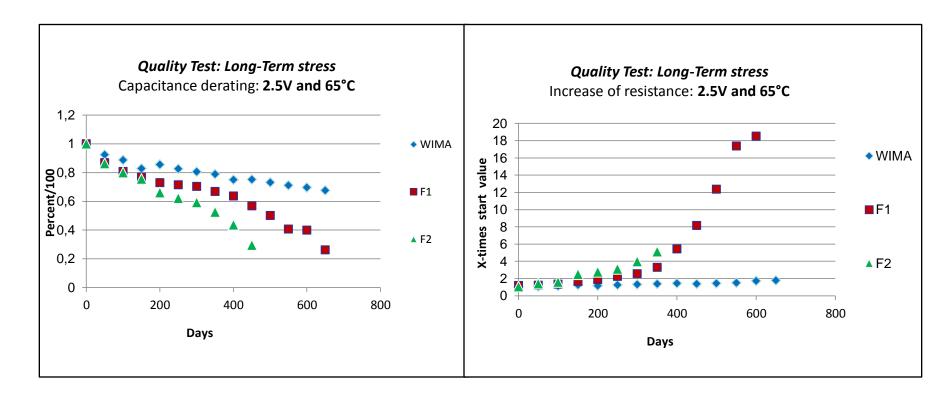
Life-Time Tests of SuperCaps

Criteria:

DC/C > 30%ESR > two fold

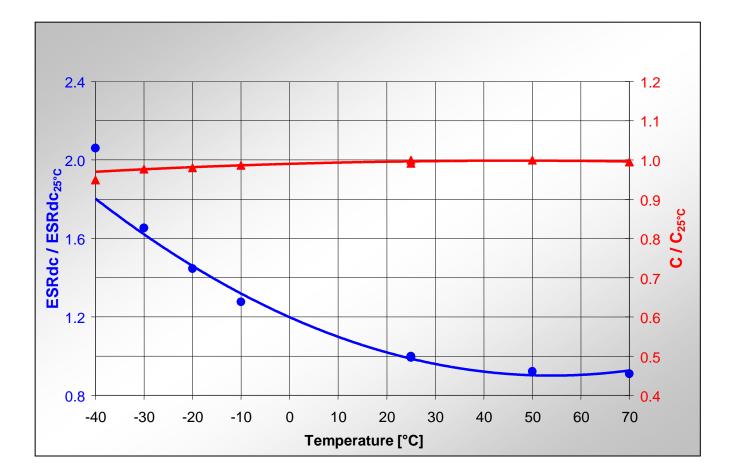
Remark:

For making modules → adjust correct individual cell voltage


No relaxation by reduction of voltage and temperature during test

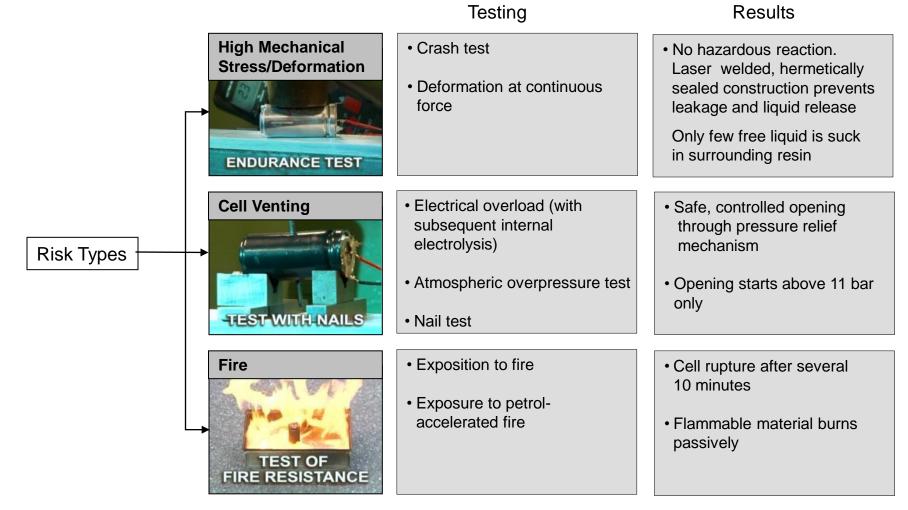
Arrhenius law: Reduction of the voltage load by 0.1 V-Reduction of the temperature by 10 K

- ightarrow doubling of the life time
- \rightarrow doubling of the life time


Life-Time Analysis by Higher Rated Voltage and Temperature

Test: No relaxation by reduction of voltage and temperature allowed

Low Temp. Behaviour: Resistance and Capacitance only Marginal Influenced



Safety of SuperCaps

- Studies show the service reliability of WIMA SuperCaps even under hardest conditions
- Constant quality assessment is part of WIMA's philosophy
- Each individual WIMA SuperCap is tested according to DIN IEC 62391-1 and -2
- Under operation according to specification, SuperCaps are safe
- Even under extreme operating conditions (cell voltage and temperature above spec., mechanical stress, high power peaks), WIMA SuperCaps are safe and reliable
- Energy density too low to cause serious damage
- Commonly used materials implemented: mainly activated carbon to absorb chemical liquids
- Hermetical sealed housings, laser welded or IP65 sealed

Safety of SuperCaps

BEST CAPACITORS

MADE IN GERMANY

www.wima.com

R & D Goal:

Increase of rated voltage

by simultaneous prolongation of life time

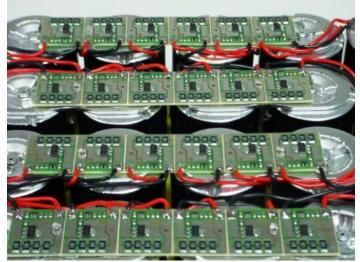
without loosing electrical performance

- Process optimization → achieved
- Usage of ",clean" materials \rightarrow
- Increase of rated voltage →
- build up samples for approval
- \rightarrow build up initial sample, under preparation

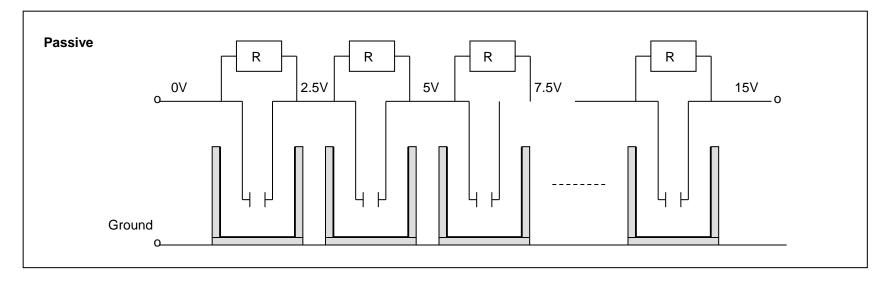
SuperCaps Modules (MC)

Basic construction principles:

- Modular construction system
- Laser beam welded
- Active or passive balancing
- Vibration resistant
- Available in IP 65 standard on request
- Plug-In solutions


Additional features available:

- Fast plug connection (automotive approved)
- Thermal sensor
- External monitoring of each cell
- Heat shrinkage
- Fuse protection (e.g. 40A)


BEST CAPACITORS

MADE IN GERMANY

Cascading: Passive Balancing

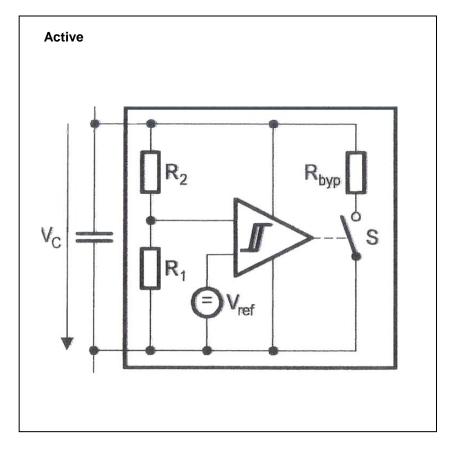
Assembly conditions:

Voltage balancing and insulated assembly is necessary!

Voltage should not exceed 2.5 V: Decomposition of the electrolyte!

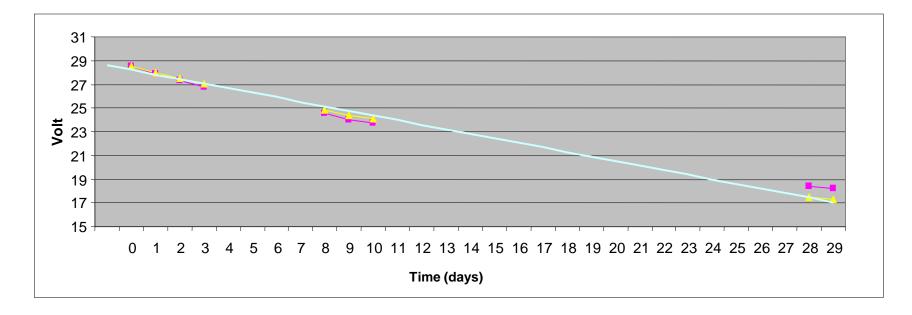
Capacitance tolerance and aging of cells "vary" voltage drop: over voltage might occur

Without resistors: U reciprocal effect to C - thus local overvoltage easily can occur With resistors: U proportional effect to R - thus voltage is fixed.

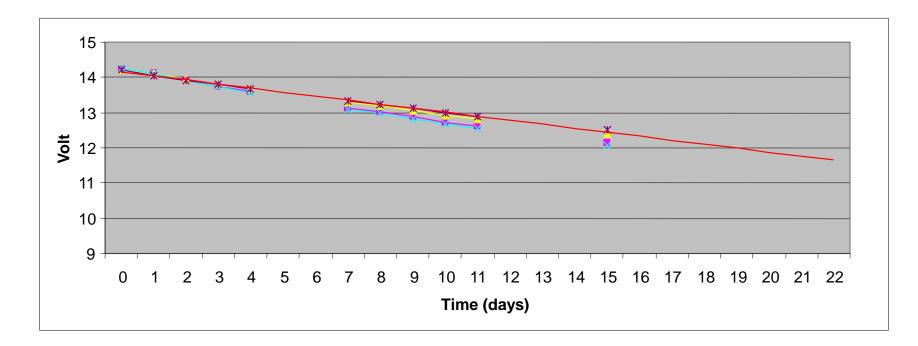


Cascading: Acive Balancing = ASB

Active balancing happens with less losses. Leakage current of the cells remains only.


Comparator compares voltage at the capacitor with a reference voltage and switches in order to discharge through a bypassing resistor (until over voltage has declined)

Self-Discharge Properties of WIMA SuperCap MC 55F/28V



Test conditions:

After charging >240 h (SD approx. 0.4 V/day) here $I_{leakage} < 1mA$ Sampel Module 1: charged/discharged several times Sample Module 2: charged one time

Self-Discharge Properties of WIMA SuperCap MC 200F/14V

Test conditions:

After charging >150 h (SD approx. 0.1 V/day) but nevertheless "air-port test" possible

Overview: Applications for WIMA SuperCaps

Wind power:

Automotive:

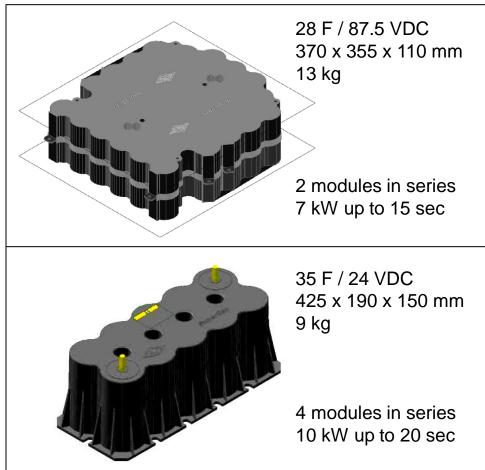
- Pitch control / emergency switch off system
- Recuperation of brake energy
 - Lifetime extension of batteries in hybrid vehicles
 - Cranking of the engine
 - Load levelling in fuel cell drives
 - Support of on-board electrical systems in cars
 - Increase of performance/ acceleration in electric cars
- Railway: Replacement of starter batteries in diesel-electric engines
 - Energy recuperation and network support in local traffic systems
- UPS: Covering of voltage deeps
- Solar systems: Short-term storage, energy buffer

Application: Cranking of Engines / On-Board Power Supply

- I _{Puls} > 2000 A
- ESR < 5 mOhm</p>
- Direct recharge after engine start
- No voltage peaks after switch off
- About 1.000.000 cycles
- Maintenance-free

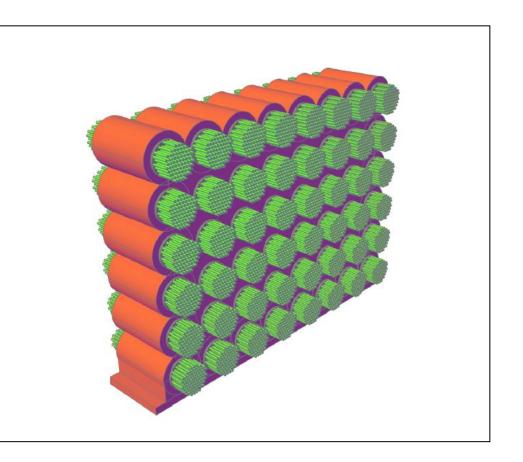
200 F / 14 VDC 170 x 130 x 115 mm 2.2 kg

55 F / 28 VDC 325 x 60 x 90 mm 3.4 kg


Application: Pitch Drive of Windmills

 Pitch control functionally independent of line voltage

Page 24


- Continuous adjustments of rotor blade angle
- Emergency stop at blackout
- Life-time 20 years
- Maintenance-free

Application: Recuperation of "Rolling Stock" (Subway, Train, etc.)

- 300 kW up to 10 sec
- Storage of braking energy
- Support of acceleration
- Efficiency > 98 %
- Integrated heat sinks
- Maintenance-free

Application: UPS Function for DC Link Voltage (400 – 1000 VDC)

- Power in the range of 250 1.000 kW for up to 2 sec can be provided by serial and parallel connection
- No downtime after short blackouts
- Peak load relieving
- Life-time > 10 years
- Maintenance-free

Application: Motor Start

Motor start (e.g. 16-cylinders) for:

- Trains
- Vessels
- Military vehicles

Starting current approx. 1000 - 3000 A (example: 1 - 3 times with 220 F at 30 V)

→ saving: approx. 90% of battery weight, thus gain 25% in range due to more fuel

Application: Emergency Power Supply

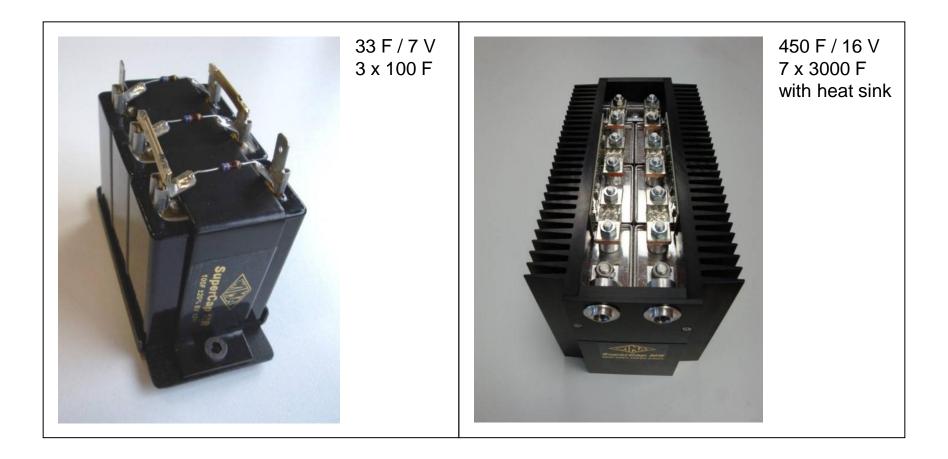
Special (emergency) power supplies for:

- Oil and gas extraction
- Telecommunication
- Hospitals, etc.

Micro turbine start:

(example: 100 x 1000 F at 240 V corresponding to 63 F and 300 kJ)

Fuel cell start bridging:


(example: 22 cells 1200 F at 48 V corresponding to 55 F and 100 kJ)

Diesel generator start: starting current approx. 500 - 600 A (example: 6-pack module / 400 F at 15 V corresponding to 7 kJ)

Further Examples of WIMA SuperCap Modules

Further Examples of WIMA SuperCap Modules

70 F / 14 V 6 x 400 F	110 F / 14 V 6 x 600 F IP 65

Highest quality

- ✓ Highest life-time expectation
- Innovation
 - Cost effectiveness
 - Environmental friendly

Designed for the Future!

ISO 9001 EN 14001

BEST CAPACITORS

MADE IN GERMANY

Thank You !

PT ELECTRONICS Департамент пассивных компонентов

194214, Санкт-Петербург, пр. Энгельса 71 e-mail: <u>passive@ptelectronics.ru</u> тел. +7 (812) 324-63-50 факс: +7 (812) 324-66-11

www.ptelectronics.ru

BEST CAPACITORS

MADE IN GERMANY