Рекомендации по применению IGBT производства ПРОТОН-ЭЛЕКТРОТЕКС

Отдел технической поддержки клиентов.

Болдырев А.Ю.

Оглавление

1 Общие сведения	3
1.1 История IGBT	3
1.2 Структура IGBT	3
1.3 IGBT производства ЗАО «Протон-Электротекс»	4
1.4 Технологии сборочного производства	5
1.5 Соответствие RoHS	7
1.6 Сертификация UL	7
2 Характеристики IGBT	8
2 1 Тепловые потери	8
2.2 Режимы и метолы испытаний параметров молупей МІАА и МІҒА	8
2.2.1 U _{BE(cos)} – напряжение пробоя коллектор-эмиттер	8
2.2.2 I _{CES} – ток утечки коллектор-эмиттер	8
2.2.3 Uce(sat) – напряжение насыщения коллектор-эмиттер	9
2.2.4 I _{GES} – ток утечки затвор-эмиттер	9
2.2.5 U _{GE(th)} – пороговое напряжение затвор-эмиттер	9
2.2.6 Параметры процесса включения t _{d(on)} , t _{ri} , t _{on} , t _{fv} , dI _{Con} /dt, dU _{CEon} , E _{on}	9
2.2.7 Параметры процесса выключения t _{d(off)} , t _{fi} , t _{off} , t _{rv} , dI _{Coff} /dt, dU _{CEoff} , E _{off}	10
2.2.8 Испытания на стойкость к воздействию тока короткого замыкания	10
3 Выбор модуля при проектировании преобразователей	11
3.1 Работа с информационными листами	11
3.2 Подбор модуля по его характеристикам	13
3.3 Характеристики, на которые следует обратить внимание	14
3.4 Защита IGBT ключей	15
3.5 Охлаждение	16
3.6 Управление	17
3.7 Параллельное соединение	18
3.8 Монтаж модулей	19
3.8.1 Термопаста	20
3.8.2 Соединительные шины	20
3.8.3 Механическое воздействие и воздействие окружающей среды	21
ПРИЛОЖЕНИЕ 1 «ПЕРЕЧЕНЬ ПАРАМЕТРОВ ДЛЯ ІВВТ МОДУЛЕИ»	22

1 Общие сведения

1.1 История IGBT

MOSFET транзисторы, появившиеся в 80-х годах, имели характеристики близкие к характеристикам идеального ключа и являлись наиболее популярными элементами для коммутации. Однако, главным параметром, ограничивающим область применения MOSFET транзисторов, является напряжение стока. Высоковольтных MOSFET транзисторов, с достаточно хорошими характеристиками, создать пока не удается, так как сопротивление открытого транзистора растет пропорционально квадрату напряжения пробоя. Кристаллы высоковольтных MOSFET имеют большую площадь. Отсюда вытекает немаленькая стоимость, в отличие от биполярных транзисторов. Справедливости ради надо сказать, что многие фирмы продолжают работать над созданием высоковольтных полевых транзисторов. Существуют компании, выпускающие транзисторы по BI-MOSFET технологии, рассчитанные на напряжение до 1600 В, но напряжение насыщения у таких ключей составляет порядка 7 В, из чего следует, что рассеиваемая на них мощность оказывается крайне высокой. Это, в свою очередь, предъявляет высокие требования к системе охлаждения.

В начале 80-х годов прошлого столетия были проведены успешные эксперименты по созданию комбинированного транзистора, состоявшего из управляющего MOSFET и выходного биполярного каскада. Они получили название биполярного транзистора с изолированным затвором (БТИЗ). После было разработано множество способов получения таких транзисторов, наибольшее распространение получила схемотехника IGBT (англ. - Insulated-gate bipolar transistor). Она (схемотехника) позволила наиболее удачно объединить все особенности полевых и биполярных транзисторов, работающих в ключевом режиме.

В 1985 году был представлен IGBT плоской структуры (без V-канала) и с большими рабочими напряжениями. Так, при высоких напряжениях и больших токах, потери в открытом состоянии очень малы. При этом устройство имеет характеристики переключения и проводимости похожие на характеристики биполярного транзистора, а управление осуществляется за счет напряжения.

В настоящее время уже разработаны транзисторы способные коммутировать до 2500 А по току и до 10 000 В по напряжению.

1.2 Структура IGBT

ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» использует в своих модулях чипы, изготовленные по технологии Trench-FS.

В таких ключах обычная структура дополнена field-stop (FS) слоем, а планарный затвор заменен вертикальным канавочным, как показано на рисунке 1. Основа представляет собой тонкую, слаболегированную ппластинку, с нанесенным, на обратную р+ сторону коллектора, дополнительным n+ слоем. Этот FS слой позволяет уменьшить электрическое поле в области коллектора.

Такая структура транзистора обладает улучшенным температурным коэффициентом прямого напряжения и большой стойкостью к перегрузке. Однако, хвостовой ток, возникающий при выключении транзистора, немного выше, но спадает он значительно быстрее, чем в ключах с планарной структурой затвора.

Элементы затвора спроектированы в так называемых «р-каналах». Поскольку активная площадь кремния при такой структуре транзистора увеличивается, то улучшается качество управления полем в поперечном сечении каналов и снижается их сопротивление. В рамках каждого определенного размера чипа можно продолжать уменьшение размера площади ячеек, поэтому IGBT с вертикальной структурой затвора имеют более высокую плотность тока и рабочее напряжение, меньшие потери проводимости и переключения, а также лучшую стойкость к защелкиванию, чем планарные ключи.

Рисунок 1. Внутренняя структура Trench-FS IGBT.

1.3 IGBT производства ЗАО «Протон-Электротекс»

ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС», на текущий момент, разработаны 2 типа модулей: МІАА (индустриальный стандарт классического исполнения 62 мм) и МІҒА (34 мм).

Рисунок 2. Индустриальный стандарт классического модульного исполнения 62мм (а) и 34мм (б)

ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» ориентировано на выпуск востребованной продукции на рынке преобразователей. На нашем производстве налажен выпуск модулей с 3 вариантами схем включения транзистора: полумост, нижний и верхний чопперы.

Рисунок 3. Стандартные схемы включения IGBT реализованные нашим производством в классических корпусах:

а – полумостовая схема, б – схема с нижним чоппером, в – схема с верхним чоппером.

Ближайшие проекты нашего производства – это модули IGBT в стандартном корпусе 62мм на токи до 600A (MIAA), а также модули габаритных размеров 152*62*17 (MIDA) с полумостовой схемой включения, на напряжение до 1700 В и токи до 600 А, аналог таких модулей как Econodual и SEMiX.

Рисунок 4. Модуль IGBT в корпусе MIDA.

Также планируется запуск производства модулей IGBT в таблеточном исполнении.

1.4 Технологии сборочного производства.

В арсенале ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» находятся современные технологии, применяемые многими мировыми производителями.

Технологическое оборудование.

Первый шаг в процессе производства IGBT модулей — это пайка. Паяный шов обеспечивает механическое соединение компонентов модуля, а также требуемую электро- и теплопроводность.

На производстве ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» процесс пайки реализован современным методом кондуктивного нагрева в вакууме, в парах муравьиной кислоты с использованием преформ. Данный подход позволяет лучше реализовать заложенный конструктивный ресурс и надежность прибора за счет следующих особенностей:

- Пайка за один подход, что обеспечивает меньший тепловой стресс для компонентов;
- Большой выбор припоев из различных материалов с требуемой эластичностью и температурой плавления;
- Высокая чистота преформ в сравнении с пастой;
- Отсутствие необходимости последующей влажной отмывки;
- Высокое качество паяного шва благодаря вакууму и, как следствие, малое количество каверн и пустот;
- В первую очередь прогреваются компоненты с большой теплоемкостью основание и DBC. В последнюю чипы. Как результат минимальное воздействие высоких температур на чип;
- Крайне гибкая настройка температурного профиля пайки важно для бессвинцовых технологий;
- Уровень площади непроплавов <3%;

На ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» вакуумная пайка осуществляется при помощи высокотехнологичной печи Vadu 200XL производства PiNK.

Рисунок 5. Распайка слоев IGBT модуля.

Следующий шаг — ультразвуковая разварка алюминиевой проволокой и приварка силовых выводов с соединениями.

Ультразвуковая (УЗ) разварка силовых выводов, управляющих выводов и соединений между чипами – это новый, современный подход к технологии производства IGBT модулей классической конструкции. Высокотехнологичное оборудование ультразвуковой сварки позволяет производству ЗАО «ПРОТОН-ЭЛЕКТРОТЕКС» создавать высококачественные приборы, способные конкурировать с мировыми лидерами в области полупроводниковой техники.

Рисунок 6. Разварка IGBT модуля проволокой.

С помощью метода ультразвуковой разварки, модули больше не ограничивают свой срок службы надежностью контактных соединений проводников внутри прибора.

За счет того что УЗ сварка происходит без использования припоя, процесс становится более чистым и менее затратным. Также УЗ сварка позволяет избежать расслоения соединений (после ТЦ), которое происходит при пайке с помощью припоя.

Еще одно преимущество данного метода заключается в том, что сварка происходит без достижения температур плавления металла. Это позволяет снизить термические нагрузки на чипы.

Рисунок 7. Приварка силовых выводов.

Описанные выше преимущества и новый современный подход к производству позволяют реализовать установки УЗ сварки F&K Delvotec 5650 и Delvotec G5 66000. Данные установки уменьшают влияние человека на производственный процесс благодаря высокому уровню автоматизации. Это увеличивает качество выпускаемой продукции. Помимо всех прочих преимуществ в установках Delvotec реализованы «Realtime» контроль протекающих во время сварки процессов, самодиагностика, документирование процесса сварки, сбор и контроль статистических данных.

Тесты показали, что процесс разварки толстой алюминиевой проволокой:

- Высоко контролируемый процесс, благодаря возможности тонкой настройки параметров сварки и геометрии петли.
- Высоко воспроизводимый процесс, благодаря системе мониторинга качества сварки с использованием real-time обратной связи. Низкий брак.
- Процесс, устойчивый к изменению свойств исходных компонентов благодаря развитой системе машинного зрения.

Данные, полученные при тестировании сварного контакта на срез, свидетельствуют о том, что параметры модулей производства ЗАО «Протон-Электротекс» не уступают аналогам конкурентов.

Оборудование для проверки и измерений.

Для контроля качества паяных и сварных соединений используется акустический микроскоп неразрушающего сканирования SONIX.

Акустическая дефектоскопия обладает следующими преимуществами:

- Позволяет легко обнаруживать скрытые дефекты и дефекты около-нулевой толщины (отсутствие смачивания);
- Высокая точность;
- Встроен в производственную линию.

Рисунок 8. Снимки с помощью акустического микроскопа: а – распайка модуля типа MIAA, б – распайка модуля типа MIFA, в – разварка проволокой модуля типа MIFA

Для контроля электрических параметров используется современное испытательное оборудование. Установки производства SCHUSTER позволяет в автоматическом режиме тестировать все электрические параметры, предусмотренные требованиями технических условий модулей. Эти тестеры так же используются ведущими европейскими производителями. Оборудование позволяет проводить 100% измерений статических и динамических параметров при Т_{i_max} и комнатной температуре.

ЗАО «Протон-Электротекс» предлагает многолетний опыт успешной работы на рынке силовых полупроводников, высокую квалификацию инженерного состава, надёжные отношения с поставщиками компонентов и материалов, а также отлично организованные бизнес-процессы, отвечающие высоким требованиям системы менеджмента качества.

1.5 Соответствие RoHS

21 октября 2011г вступила в силу европейская директива 2011/65/EU RoHS2 об ограничении содержания вредных веществ в электрическом и электронном оборудовании. Эта директива расширяет принятую ранее 2002/95/EC (RoHS). Использование следующих веществ ограничены:

- Свинец (Pb);
- Ртуть (Hg);
- Шестивалентный хром (Cr6);
- Кадмий (Cd);
- Полибромированный бифенил (PBB);
- Полибромированный дифенил (PBDE);
- Декабромдифениловый эфир (decaDBE).

Мы придерживаемся этой директивы, всю более подробную информацию можно узнать на нашем сайте <u>http://www.proton-electrotex.com/ru/company/sertification.php</u>

1.6 Сертификация UL

На данный момент модули находятся на стадии сертификационных испытаний.

2 Характеристики IGBT

2.1 Тепловые потери

Тепловые потери при переключении транзистора складываются из статических потерь в открытом состоянии, динамических потерь переключения, потерь управления и потерь за счет утечки в закрытом состоянии.

Статические потери можно рассчитать по упрощенной формуле вида: P_{пp} = U_{CE(sat)}*I_{avg}, где I_{avg} – среднее значение тока за период.

Мощность потерь переключения при периодической коммутации может быть определена по формуле: $P_n = \frac{1}{T} \int_0^T U_{CE}(t)^* i_C(t)(dt)$, где Т — период коммутации, $U_{CE}(t)$ – напряжение «коллектор-эмиттер» в процессе

периода коммутации, ic(t) – ток коллектора в процессе периода коммутации.

Потери мощности в ключе влияют на КПД устройства, поэтому их снижение является основной задачей при проектировании.

Составляющая динамических потерь зависит от частоты коммутации ключа. Это накладывает ограничение на повышение рабочих частот силовых устройств. Следует отметить, что динамические потери имеют ярко выраженный импульсный характер. Это усугубляет их отрицательное влияние на ключ, из-за возрастания мгновенных значений температуры на кристалле. Таким образом, повышение рабочей частоты коммутации ключа ограничивается не только из-за снижения их быстродействия, но и из-за возрастающих динамических потерь.

Скорость включения и потери при включении могут управляться изменением сопротивления в цепи затвора, однако, следует учитывать, что при выключении транзистора можно управлять только скоростью выключения, но не остаточным током.

Модули производства ЗАО «Протон-Электротекс» рассчитаны для работы на средних частотах 5 – 7 кГц.

2.2 Режимы и методы испытаний параметров модулей MIAA и MIFA

Испытания соответствуют ІЕС 60747-9 и ГОСТ 24461-80.

2.2.1 U_{BR(ces)} – напряжение пробоя коллектор-эмиттер

Этот параметр характеризует нижний предел пробивного напряжения. С понижением температуры пробивное напряжение снижается из-за положительного температурного коэффициента.

Условия проведения испытаний:

- Температура перехода 25±10°С;
- напряжение в закрытом состоянии:
 - форма трапецеидальная, с линейно нарастающим передним фронтом;
 - амплитуда максимально допустимое напряжение пробоя коллектор эмиттер;
 - длительность 10 мс;
 - количество импульсов один импульс.
- режим по цепи затвора цепь затвор-эмиттер транзистора закорочена.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 в приложении А.

2.2.2 І_{СЕЅ} – ток утечки коллектор-эмиттер

Ток коллектора при нулевом напряжении на затворе.

Условия испытаний:

- Температура перехода 25±10°С;
- Напряжение в закрытом состоянии:
 - форма трапецеидальная, с линейно нарастающим передним фронтом;

- амплитуда максимально допустимое напряжение коллектор эмиттер (U_{CES});
- длительность 10 мс;
- количество импульсов один импульс.
- режим по цепи затвора цепь затвор-эмиттер транзистора закорочена;
- ток коллектора максимальное значение, указанное в программе испытаний для конкретного типа модуля.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.4.

2.2.3 U_{CE(sat)} – напряжение насыщения коллектор-эмиттер

Условия испытаний:

- температура перехода 25±10°С;
- напряжение, приложенное к затвору транзистора относительно его эмиттера 15В;
- импульс тока коллектора:
 - амплитуда устанавливается равной значению номинального тока коллектора (I_{C_nom}) для этого типа модулей;
 - длительность импульса тока коллектора 300 мкс;
 - количество импульсов один импульс;
- контрольные точки измерения напряжения должны находиться на выводах модуля таким образом, чтобы падение напряжения на контактах и проводниках от протекания силового тока не влияло на результат измерений.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.2.

2.2.4 І_{GES} – ток утечки затвор-эмиттер

Условия испытаний:

- температура перехода 25±10°С
- режим по цепи коллектора цепь коллектор-эмиттер закорочена;
- напряжение, приложенное к затвору транзистора относительно его эмиттера вначале 20 В, затем минус 20 В.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.5.

2.2.5 U_{GE(th)} – пороговое напряжение затвор-эмиттер

Напряжение появления тока коллектора. Как и **U**_{BR(ces)} уменьшается с увеличением температуры.

Условия испытаний:

- Температура перехода 25±10°С;
- Напряжение коллектор-эмиттер равно напряжению затвор-эмиттер (допускается соединять между собой затвор и коллектор);

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.3.

2.2.6 Параметры процесса включения t_{d(on)}, t_{ri}, t_{on}, t_{fv}, dI_{Con}/dt, dU_{CEon}, E_{on} и обратного восстановления диода t_{rr}, I_{rrm}, Q_{rr}, E_{rec}

Условия испытаний:

- Температура перехода 150°С;
- Режим по цепи затвора:
 - амплитуда импульсов напряжения на затворе испытуемого транзистора относительно его эмиттера – ± 15 B;
 - количество отпирающих импульсов напряжения на затворе испытуемого транзистора два, причем длительность первого импульса много больше длительности второго импульса тока и длительности паузы между первым и вторым импульсами;

- внутреннее сопротивление источников отпирающего и запирающего напряжения на затворе для данного типа модулей должно указываться в программе испытаний;
- режим по цепи коллектора:
 - напряжение на коллекторе в закрытом состоянии 0,5 от напряжения пробоя коллектор эмиттер, если иное не указано в программе испытаний;
 - в цепи коллектора включена катушка индуктивности, зашунтированная обратным диодом;
 - постоянная времени нагрузки L/R должна быть много больше времени коммутации испытуемого транзистора, входящего в состав модуля;
- ток в открытом состоянии:
 - форма первого импульса тока линейно нарастающий импульс;
 - амплитуда первого импульса тока коллектора (ток нагрузки) устанавливается равной значению номинального тока коллектора для этого типа модулей;

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.11.

2.2.7 Параметры процесса выключения t_{d(off)}, t_{fi}, t_{off}, t_{rv}, dl_{Coff}/dt, dU_{CEoff}, E_{off}

Условия испытаний:

- температура перехода 150°С.
- режим по цепи затвора:
 - амплитуда импульсов напряжения на затворе испытуемого транзистора относительно его эмиттера – ± 15 B;
 - внутреннее сопротивление источников отпирающего и запирающего напряжения на затворе для данного типа модулей должно указываться в программе испытаний;
- режим по цепи коллектора:
 - напряжение на коллекторе в закрытом состоянии 0,5 от напряжения пробоя коллектор эмиттер;
 - в цепи коллектора включена катушка индуктивности, зашунтированная обратным диодом;
 - постоянная времени нагрузки L/R должна быть много больше времени коммутации испытуемого транзистора, входящего в состав модуля;
- ток в открытом состоянии:
 - форма первого импульса тока линейно нарастающий импульс;
 - амплитуда импульса тока коллектора (ток нагрузки) устанавливается равной значению номинального тока коллектора для этого типа модулей.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.3.12.

2.2.8 Испытания на стойкость к воздействию тока короткого замыкания

Условия измерений:

- температура перехода 150 °C или другое значение, указанное в программе испытаний.
- режим по цепи затвора:
 - амплитуда импульсов напряжения на затворе испытуемого транзистора относительно его эмиттера – ± 15 B;
 - сопротивление резисторов в цепи затвора указываются в программе испытаний;
 - количество отпирающих импульсов напряжения затвор-эмиттер один;
 - длительность отпирающего импульса напряжения затвор-эмиттер по уровню 50% от максимального положительного напряжения (t_{psc}) - 10 мкс.
- режим по цепи коллектора:
 - напряжение на коллекторе в закрытом состоянии значение, указанное в программе испытаний;
 - цепь коллектора должна иметь минимальное сопротивление и паразитную индуктивность;
 - амплитуда импульса тока коллектора должна ограничиваться внутренним сопротивлением испытуемого транзистора.

Схема и метод испытаний соответствуют методу, приведенному в стандарте IEC 60747-9 п. 6.2.6.

3 Выбор модуля при проектировании преобразователей

3.1 Подбор модуля по его характеристикам

Выбор IGBT модуля, при проектировании преобразователя, является сложной конструкторской задачей. Основная проблема, решаемая при выборе модуля – это выбор общей конструкции «модуль-охладитель», позволяющий получить тепловой баланс между количеством тепла, выделяемого на полупроводниковых компонентах модуля (кристаллах), и количеством тепла которое способен отвести охладитель. Тепловой баланс должен наступать при температуре кристалла модуля не превышающей максимально допустимую температуру Т_ітах.

Количество тепла, выделяемое кристаллами в единицу времени, или мощность потерь, зависти от многих факторов. Потери можно условно разделить на две основные части:

- Статические потери. Они обусловлены неидеальной проводимость полупроводниковых компонентов модуля во включенном состоянии и токами утечки в выключенном состоянии;
- Динамические потери. Они обусловлены конечным временем включения/выключения полупроводниковых компонентов.

Для современных IGBT модулей статические потери, в основном, зависят от величины и формы протекающего тока. При расчетах величиной статических потерь, вызванных током утечки в выключенном состоянии можно пренебречь.

Поскольку IGBT модуль, как правило, используется в качестве ключа, внутри модуля, параллельно IGBT транзистору включен диод. В связи с этим, при расчете статических потерь следует различать статические потери на транзисторе и статические потери на диоде.

Расчет статических потерь можно проводить, используя зависимость величины падения напряжения на транзисторе (диоде) от тока. Неплохую точность при расчете можно получить, используя линейную модель описания падения напряжения на полупроводниковом элементе. При этом предполагается, что падение описывается зависимостью U₍₁₎=U₀*I_{cp}+r_d*I_{ms}*I_{mc}. При использовании данной модели мощность статических потерь составит P=U₀*I_{cp}+r_d*I_{ms}*I_{mc}, где

I_{ср} – средний ток через транзистор (диод), I_{ms} – среднеквадратичный ток через транзистор(диод).

Расчет динамических потерь – более сложная задача.

Динамические потери на транзисторе можно разделить на два компонента: потери на включение и потери на выключение. Каждая компонента зависит от многих факторов, таких как напряжение на коллекторе, ток в момент коммутации, напряжение управления, формируемое драйвером, величина резистора в цепи управления, температура кристалла. Типовые зависимости потерь при коммутации приведены на рисунке 10.

Рисунок 10. Потери энергии на транзисторе: а — от тока коллектора, б — от сопротивления, для модуля MIFA-HB17FA-075

Динамические потери на диоде в основном описываются потерями обратного восстановления и зависят как от величины прикладываемого обратного напряжения и величины тока протекающего через диод до момента выключения, так и от параметров сигнала управления IGBT транзистора, включенного последовательно с диодом в IGBT модуле. Величина динамических потерь также зависит от температуры кристаллов диода и транзистора. Типовые зависимости потерь при восстановлении диода приведены на рисунке 11.

Рисунок 11. Потери энергии: а — от тока коллектора, б — от сопротивления, для модуля MIFA-HB17FA-075

Динамические потери напрямую зависят от частоты коммутации. При проведении расчетов динамических потерь следует учитывать направление тока при коммутации, поскольку не каждая коммутация автоматически приводит к возникновению динамических потерь на каждом полупроводниковом элементе модуля.

Для правильного выбора типа модуля предлагается следующий алгоритм:

- 1. Определяется номинальное и максимальное допустимое рабочее напряжения звена постоянного тока;
- 2. Определяется тип используемого модуля по классификационному напряжению:

Рекомендуемые классы напряжения IGBT для стандартных промышленных сетей.					
Напряжение сети (RMS)	220 B	380 B	690 B		
U _{CES} IGBT	600 B	1200 B	1700 B		

3. Определяется величина максимального выходного тока преобразователя;

- 4. Выбирается максимально допустимая частота коммутации для максимального выходного тока преобразователя;
- 5. Выбирается модуль необходимого класса, с величиной номинального тока не ниже максимального выходного тока преобразователя;
- Производится расчет статических и динамических потерь на каждом полупроводниковом элементе модуля для максимальных режимов работы преобразователя. Расчет следует проводить для значений температуры кристаллов модуля близкой к максимально допустимой;
- Учитываются величины теплового сопротивления для каждого компонента модуля относительно основания модуля и величину теплового сопротивления между основанием модуля и охладителем, вычисляется максимально допустимая температуры охладителя в зоне установки модуля;
- Производится расчет суммарных потерь на модуль. Исходя из предполагаемой конструкции охладителя и максимально допустимой температуры охлаждающей среды производится вычисление температуры охладителя в зоне установки модулей;
- 9. Если полученная температура не превышает расчетного значения, полученного в п.7 с достаточным запасом, то выбор модуля считаем законченным;
- Если запас по температуре охладителя, в зоне установки модулей, слишком большой, решаем вопрос о возможности замены модуля с уменьшенной величиной номинального тока. В случае замены модуля повторно производим тепловой расчет;
- Если запас по температуре охладителя не достаточный, решаем вопрос о возможности замены модуля на модуль с большей величиной номинального тока, или меняем систему охлаждения модуля. В случае замены модуля повторно производим тепловой расчет.

3.2 Работа с информационными материалами

Цель данного раздела: помочь разобраться с информационными материалами на IGBT модули, чтобы должным образом понять их содержание. Здесь даны определения параметров, отраженных в информационном листе. Для пояснения используются данные и диаграммы, для MIAA – HB17FA – 300. Однако данное руководство применимо ко всему диапазону модулей.

В первом разделе информационного листа (ИЛ) приводится общее описание, вид корпуса и схемы включения.

Рисунок 12. Общее описание модуля

Следующий рисунок посвящен максимальным параметрам модуля.

Параметр	Обозн.	Условия	Знач.	Eg.	
IGBT	Ale contra de la c	all and a second se			
Напряжение коллектор-эмиттер	UCES	U _{GE} = 0.	1700	В	Рассчетный ток коллектора для
Номинальный ток коллектора	IC nom		300	A	разной температуры перехода
	IC 25	T _{vj (max)} = 175°C; T _c = 25°C.	402	A	
постоянный ток коллектора	IC 80	$T_{vj (max)} = 175^{\circ}C; T_{c} = 80^{\circ}C.$	308	A	
Максимальный повторяющийся импульсный ток коллектора ^{*1}	ICRM	I _{CRM} = 3 x I _{C nom} ; t _p = 1 MC.	900	A	
Длительность импульсного тока короткого		T _{vj} = 25°C; U _{GE} = ±15 B; U _{CE} = 980B; R _{G on} = R _{G off} = 2.2 OM; I _{Cmax} < 1900 A.	10		
замыкания	Lpsc	T _{vj} = 150°C; U _{GE} = ±15 B; U _{CE} = 980B; R _{G on} = R _{G off} = 2.2 OM; I _{omax} < 1550 A.	10	MKC	
Напряжение затвор-эмиттер	UGES		±20	В	
Рабочая температура перехода	T _{vj (op)}		-40+150	°C	
Диод чоппера\Обратно-параллельный диод.					10 100 100 100
Повторяющееся импульсное обратное напряжение	URRM	U _{GE} = 0 B.	1700	В	Рассчетный прямой ток диода для
Номинальный прямой ток	I _{F nom}		300	A	разной температуры перехода
	F 25	T _{vj (max)} = 175°C; T _c = 25°C.	291	A	
постоянный прямой ток	IF 80	$T_{vj (max)} = 175^{\circ}C; T_c = 80^{\circ}C.$	219	A	
Повторяющийся прямой импульсный ток ¹	FRM	I _{FRM} = 3 x I _{F nom} ; t _p = 1 MC.	900	A	
Рабочая температура перехода	T _{vj (op)}		-40+150	°C	
Модуль					
Температура хранения	T _{stg}		-40+50	°C	
Напряжение пробоя изоляции	Uisol	AC sin 50 Гц; t = 1 мин.	4000	В	

Рисунок 13. Максимально допустимые параметры модуля.

Характеристики.

Характеристики	-	1		2	2			1		
Параметр	Обозн.	н. Условия			знач.		Ед.			
ICPT				мин.	тип.	макс.		4		
IGBI	Υ <u></u>	11 - 145 D. 1 - 000 A.	T - 0590	0.40	0.46	0.00	P			
напряжение насыщения коллектор-эмиттер	U _{CEsat}	U _{GE} = +15 В; I _C = 300 А; t _i = 1000 мкс.	$T_{vj} = 25^{\circ}C$ $T_{vi} = 150^{\circ}C$	2.13	3.23	3.57	B	-		
Пороговое напряжение затвор-эмиттер	U _{GE(th)}	I _C = 6 MA; U _{CE} = U _{GE} ; T _{vj} = t _v = 2 MC.	= 25°C;	5.38	5.99	6.36	В	ВНИМАНИЕ!!! значения параметров ёмкости,		
Ток утечки коллектор-эмиттер	ICES	U _{CE} = 1700 B; t _i = 10 мс: U _{CE} = 0.	T _{vj} = 25°C T _{vi} = 150°C	3.90 0.98	4.96	150 2.50	мкА	заряда и сопротивления затвора указаны для одного ключа		
Ток утечки затвор-эмиттер	IGES	$U_{CE} = 0; U_{GE} = \pm 20 \text{ B}; T_{vj} = 25^{\circ}\text{C};$ t. = 30 MC		13.0	16.5	250	нА			
Входная ёмкость	Cies				27.2	-	нΦ	1/		
Выходная ёмкость	Coss	$U_{CE} = 10 \text{ B}; U_{GE} = 0 \text{ B};$		-	1.40		нΦ			
Обратная передаточная ёмкость	Gras	$f = 1 MI \mu; T_{vj} = 25^{\circ}C.$			2.80		нΦ	V		
Заряд затвора	Q _G	I _C = 300 A; U _{CE} = 600 B;			3483	3738	нКл			
Встроенный резистор затвора	Row	$T_{eff} = 25^{\circ}C$			2.50	2	Ом			
	· · · ·		T ₁₀ = 25°C	458	491	557	0	1		
Время задержки включения	t _{d(on)}		T _{vi} = 150°C	559	583	650	HC	Динамика модуля		
People and the second s			T _{vj} = 25°C	55.0	56.0	64.0				
время нарастания тока коллектора	ι _ή	U _{CE} = 850 B;	T _{vi} = 150°C	60.0	62.0	70.0	НС			
Энергия потерь при включении	E	U _{GE} = ±15 B;	T _{vj} = 25°C	36.8	40.2	47.0	мЛж			
опертия потерь при выпочении	Lon	Lon	Lon	$R_{c} = 22 \text{ OM}$	T _{vj} = 150°C	64.2	69.4	85.0	тда	
Время задержки выключения	tacom	L = 300 мкГн.	T _{vj} = 25°C	652	682	755	нс			
	1997		T _{vj} = 150°C	823	849	935		4		
Время спада тока коллектора	ts		$T_{vj} = 25^{\circ}C$	462	4/3	520	HC			
		-	Tuj = 150 C	50.6	093	69.0		-		
Энергия потерь при выключении	Eoff		$T_{vj} = 25 \text{ C}$ $T_{vi} = 150^{\circ}\text{C}$	59.6 81.9	84.4	100	мДж			
Пороговое напряжение	11	U _{GE} = +15 B; T _{vj} = 150°C;		0.00	4.00	4.07	P	4		
коллектор-эмиттер	UCEO	I _{CE1} = 75 A; I _{CE2} = 300 A;		0.98	1.02	1.07	В			
Динамическое сопротивление	ICE0	t _u = 1000 мкс.		6.36	7.26	8.25	мОм			
Тепловое сопротивление переход-корпус	R _{th(j-c)}	DC; I _{CE} = 220±10 A; I _{test} = 1.0 A; U _{GE} = +15 B.		æ	0.056	0.085	К/Вт			
Диод чоппера\Обратно-паралле	ельный д	циод.								
Responses and the second	176	I _F = 300 A;	T _{vj} = 25°C	1.86	1.87	2.08	В]		
постоянное прямое напряжение	UF	U _{GE} = 0; t _u = 1000 мкс.	T _{vj} = 150°C	2.24	2.51	2.78	В]		
Воемя обратного восстановления	t_		T _{vj} = 25°C	518	558	710	HC	1		
время обратного восстановления	4r	U _{GE} = ±15 B;	T _{vj} = 150°C	978	1052	1230	HC			
Повторяющийся импульсный	IRRM	U _{CE} = 850 B;	$T_{vj} = 25^{\circ}C$	300	328	365	A	4		
ооратныи ток		I _{C max} = 300 A;	1 _{vj} = 150°C	323	358	400	A	4		
Заряд обратного восстановления	Qrr	R _{G on} = 2.2 ОМ; L = 300 мкГн.	$T_{vj} = 25^{\circ}C$ $T_{vi} = 150^{\circ}C$	49.6	51.2 98.9	60.0	мкКл	1		
Энергия потерь при обратном			T _w = 25°C	31.5	32.9	38.0	мДж	1		
восстановлении	Erec		T _{vj} = 150°C	59.2	61.0	68.0	мДж	1		
Пороговое напряжение	U(T0)	T _{vi} = 150°C; U _{GE} = 0; I _{CE1}	= 75 A;	0.86	0.90	0.96	B	1		
Динамическое сопротивление	ΓT	I _{CE2} = 300 А; t _u = 1000 м	KC	4.40	5.19	6.00	мОм	1		
Тепловое сопротивление переход-корпус	Rth(JC-D)	DC; I _{CE} = 200±10 A; I _{test} = 1.0 A; U _{CE} = +15 B.		5	0.127	0.190	К/Вт			

Рисунок 14. Характеристики чипов IGBT и FRD

Начиная с 4-й страницы информационных материалов, представлены графики всех основных параметров и условия их измерения. Особое внимание стоит обратить на графики динамических характеристик транзистора. Также, для корректного определения требуемой мощности драйвера, стоит уделить внимание графику заряда затвора.

На самой последней страницы ИЛ представлены габаритные размеры и руководство по маркировке. Т.к. параметры для различных схем одинаковы, а ёмкости, заряд и сопротивление затвора указаны для одного ключа, то ИЛ могут применяться для всех возможных (для данного корпуса) схем включения.

3.3 Характеристики, на которые следует обратить внимание

Максимальный ток коллектора – I_с. В Информационных материалах ЗАО «Протон-Электротекс» значение данного параметра приводится при двух значениях температур: нормальной – 25°С и повышенной – 80°С. Для более детального анализа можно обратиться к графику, представленному в информационных материалах «Типичная зависимость тока коллектора от температуры корпуса».

Разработчику следует обеспечить номинальный тепловой режим, чтобы не допускать перегрева кристалла и преждевременного выхода из строя транзистора.

Амплитуда и длительность тока перегрузки не должна превышать значения указанного в информационном листе на транзистор. Повторяющееся амплитудное значение тока должно быть не более 70 ÷ 80 % от I_C. Длительность тока короткого замыкания, вызванного аварией в нагрузке, не должна превышать 10 мкс.

Напряжение «коллектор-эмиттер» – U_{CE}. U_{CE} определяет класс транзистора. Перегрузка IGBT по напряжению не допускается, однако транзистор может выдерживать 5 - 10 кратные неповторяющиеся перегрузки по току. В разделе 3.1 приведена таблица рекомендуемых классов IGBT для стандартных промышленных сетей. Всегда следует оставлять запас по напряжению. Например, после выпрямления стандартного напряжения трехфазной сети 380 В на транзисторы будет поступать напряжение 540 В. В этом

случае не рекомендуется использовать IGBT на 600 В, так как запас по напряжению будет слишком мал и ключи могут не выдержать коммутационного перенапряжений в процессе работы.

Рабочее максимальное напряжение коллектор эмиттер – U_{CES}. В приложении 1 указан физический смысл параметра, но стоит упомянуть о том, что для нормальной работы IGBT рабочее пиковое напряжение не должно превышать 80% номинального, а нормальное рабочее - 60% номинального.

Заряд затвора – Q_G. Заряд затвора необходим для расчета драйвера управления транзистора.

Напряжение насыщения – U_{CEsat}. Это напряжение, при котором транзистор полностью открыт. Значение данного параметра, для среднечастотных IGBT, находится в пределах 3 В.

Формула расчета тока для IGBT (при условии, что коэффициент формы k=1)

$$I_{c} = \sqrt{\left(\frac{U_{CE0}}{2 * r_{CE0}}\right)^{2} + \frac{T_{j} - T_{c}}{R_{th(j-c)} * r_{CE0}} - \frac{U_{CE0}}{2 * r_{CE0}}}$$

где, U_{CE0} – пороговое напряжение коллектор-эмиттер;

r_{CE0} – динамическое сопротивление;

R_{th(i-c)} – тепловое сопротивление переход-корпус IGBT;

Ті – максимальная рабочая температура кристалла;

Тс-температура корпуса.

Расчет тока для диода происходит аналогичным образом, только r_{CE0} заменяется на r_T, U_{CE0} заменяется на U_(T0), а R_{th(i-c)} заменяется на R_{th(JC-D)} – тепловое сопротивление диода.

3.4 Защита IGBT ключей

Для защиты модулей от коммутационных перенапряжений в цепи коллектор-эмиттер следует применять снабберные RC- и RCD-цепи, установленные непосредственно на силовых выводах, рис. 15

Рисунок 15. Типовые схемы включения снабберных цепей.

При подключении нескольких модулей к одному драйверу максимальное значение суммарного заряда затвора нагрузки (n*Q_G) должно быть меньше, а эквивалентного резистора (R_g/n) – больше величин, допустимых для драйвера. Среднее значение выходного тока источника питания драйвера I_{AV} должно удовлетворять соотношению: I_{AV} > n*Q_g*f_{SW}

где f_{SW} – максимальная частота коммутации; n – количество драйверов; Q_{g-} заряд затвора.

Для борьбы с возникновением выравнивающих токов рекомендуется ставить резистор в сигнальной цепи эмиттера. Резистор подбирается номиналом от 0.5 Ом до 0.1 R_G что позволяет ограничить эти токи и одновременно демпфировать паразитные контуры.

Также, для снятия нагрузки с модулей, при наличии достаточно большой разницы в задержке переключения, рекомендуется использовать симметрирующие индуктивности для равномерного распределения токов. Формула для расчета индуктивности:

$$L_{min} = \frac{U_{cc} * dt_{max}}{\Delta I_{out}}$$

где, dt_{max} — максимальная разница во времени переключения;

 ΔI_{out} — допустимое отклонение от среднего значения тока; U_{cc} — напряжение на шине питания.

Для ограничения тока КЗ рекомендуется включение защитной цепи между затвором и эмиттером, рисунок 16. Это предотвратит увеличение U_{GE} при резком нарастании I_C и выход транзистора из насыщения.

Рисунок 16. Типовые схемы ограничения напряжения на затворе.

Для предотвращения возникновения больших коммутационных перенапряжений, при выходе из режима КЗ и предотвращения пробоя модуля, рекомендуется применять следующие меры:

- Снижение напряжения на выходе драйвера с меньшей скоростью, чем при выключении модуля в нормальном режиме работы;
- Выключение модуля в два этапа:
 - 1. Перевод выхода драйвера в третье состояние и подключение в цепь затвор-эмиттер резистора;
 - 2. Резкое выключение модуля после снижения тока коллектора до номинального значения.

IGBT модули чувствительны к электростатическому разряду, поэтому при их транспортировке, монтаже и эксплуатации должны учитываться следующие требования:

- Для защиты затвора от статического пробоя непосредственно в схеме, необходимо подключение параллельно цепи затвор-эмиттер резистора сопротивлением 10 ... 20 кОм;
- При транспортировке модулей затвор и управляющий эмиттерный вывод должны быть закорочены токопроводящими перемычками, которые не должны сниматься до момента подключения модуля в схему;
- Производить монтажные работы с IGBT модулями необходимо только при наличии заземления персонала через высокоомный резистор сопротивлением 1 МОм (антистатический браслет);
- Все инструменты и оснастка, с которыми может контактировать модуль, должны быть заземлены;
- Перед проведением измерений или испытаний необходимо убедиться, что с измерительных приборов снят весь электростатический заряд.

3.5 Охлаждение

Эффективное охлаждение — залог долгой службы прибора. Тепловыделение, как разрушающий фактор, может проявить себя не сразу, и прибор проработает еще какое-то время в номинальном режиме. Чтобы выбрать режимы работы модуля, которые обеспечат его надежное функционирование, необходимо провести тепловой расчет. Для теплового расчета, в первом приближении, можно использовать тепловую модель, представленную на рисунке 17.

Рисунок 17. Тепловая модель.

Тепловая модель представляет собой совокупность из трех тепловых сопротивлений: R_{th(j-c)} (junction — case), R_{th(c-h)} (case – heatsink) и R_{th(h-a)} (heatsink – ambient). Величина R_{th(c-h)}, также, включает в себя тепловое сопротивление теплопроводящего материала R_{th(p)} оно чаще всего приводится в информационных материалах на соответствующий материал:

$$R_{th(p)} = \frac{\delta_p}{\lambda * S_p}$$

где, δ_p — толщина теплопроводящего слоя;

λ — коэффициент теплопроводности материала Вт/м * С°;

S_P – площадь одной стороны термоинтерфейса (прокладки или пасты).

Рисунок 18. Тепловая модель полупроводникового элемента на радиаторе.

По тепловой модели, представленной на рисунке 17, можно определить Т_і.

$$T_{i} = T_{a} + (R_{th(i-c)} + R_{th(c-h)} + R_{th(h-a)}) * P_{\Pi}$$
,

где, Рп-мощность потерь выделяемых полупроводниковым элементом.

Для нескольких модулей, установленных на один радиатор, необходимо несколько модифицировать тепловую модель. Модифицированная тепловая модель показана на рисунке 19.

Рисунок 19. Тепловая модель для нескольких модулей.

3.6 Управление

При проектировании схем управления необходимо придерживаться некоторых простых принципов, которые позволят сохранить работоспособность IGBT на протяжении всего срока службы прибора:

• быстрое нарастание и спад импульсов управления, для уменьшения тепловых потерь при переключении

- обеспечение быстрого перезаряда входных емкостей транзистора по средствам высокой величины импульса тока управления;
- совместимость входа драйвера с цифровыми сигналами управления ТТЛ/КМОП;
- обеспечение «плавающего» потенциала управления «верхнего» ключа в полумостовой схеме.

Рекомендуемые параметры работы драйвера для IGBT:

- Значение U_{GE} при включении должно быть равно +15±10% В (для обеспечения минимальных потерь во включенном состоянии);
- Значение U_{GE} при выключении должно быть от минус 7 В до минус 15 В (для снижения потерь при выключении и обеспечения высокой стойкости транзистора к du/dt);
- Максимальное напряжение затвор-эмиттер не должно превышать ±20 В;
- Длительность фронтов импульсов напряжения на выходе драйвера должна быть минимум в 5...10 раз меньше значений времени переключения указанных в ИЛ на прибор;
- Рекомендуемое внутреннее сопротивление драйвера управления должно выбираться в пределах допустимых значений указанных для конкретного модуля с учетом минимальных динамических потерь и исключающих возникновение перенапряжений вызванных перезарядкой индуктивностей;
- Напряжение запирания должно гарантировать полное выключение модуля при любых условиях эксплуатации;
- Длина цепи управления должна быть минимальна. Рекомендуется использовать витую пару или применять прямой монтаж платы драйвера на выводы управления модуля;
- Цепи управления должны быть изолированы от возможных источников помех;
- Напряжение питания должно подаваться в следующем порядке:
 - 1. Система управления и драйверы;
 - 2. Модули IGBT.

Из-за специфики изготовления выходных комплементарных каскадов драйвера управления, образуется паразитная тиристорная p-n-p-n структура, которая может «защелкнуться», что приведет к выгоранию выходного каскада драйвера. Избежать подобного эффекта можно, если подключить общий выход микросхемы, исток мощного транзистора и отрицательную клемму блокирующего трансформатора сглаживающего фильтра на одну шину.

3.7 Параллельное соединение

Рисунок 20. Пример параллельного соединения модулей IGBT (верхнее плечо моста)

Довольно часто на практике возникают случаи, при которых необходимо коммутировать большой ток, значение которого выше предельного значения тока отдельного транзистора. В таком случае можно включить параллельно несколько транзисторов рассчитанных на меньшие токи.

Схема управления должна иметь малое внутреннее сопротивление.

Чтобы избежать не правильной работы схемы и последующего выгорания ключей, необходимо подобрать IGBT с как можно более близкими значениями порогового напряжения. Любая разница пороговых напряжений воздействует на распределение тока параллельно включенных транзисторов. Идеальным будет вариант, когда все включенные параллельно транзисторы взяты из одной партии, изготовлены в единых условиях.

Все приборы необходимо размещать на одном охладителе как можно ближе друг к другу. Это обеспечит равномерный теплоотвод. Нагрузка по току не должна превышать 80...90%, чтобы обеспечить некий запас на несимметрию распределения токов при параллельной работе.

Нельзя забывать, что у параллельно соединенных транзисторов также возрастает и входная емкость. Исходя из этого, схема управления параллельно соединенными транзисторами должна обеспечить необходимое время коммутации ключей.

Чтобы исключить влияние затворов транзисторов друг на друга, в управляющей цепи каждого затвора рекомендуется устанавливать собственный резистор. Он подбирается из рекомендованных значений с учетом использования модулей в схеме.

Далее необходимо определить величину тока, которую обеспечивает драйвер. Для этого надо полученное значение R₀ разделить на количество параллельно соединенных транзисторов.

Увеличение длины проводников между транзисторами может привести к увеличению паразитной индуктивности монтажа, что в свою очередь приводит к опасным выбросам напряжения и неконтролируемому поведению ключей.

Пороговое напряжение параллельно включенных транзисторов не может быть достигнуто одновременно для всех приборов, поэтому отдельные ключи берут на себя часть тока нагрузки тех IGBT, которые были выключены раньше.

Из вышесказанного следует, что IGBT должны быть подобраны по напряжению в открытом состоянии. При параллельном включении двух модулей сортировка по напряжению в открытом состоянии не требуется. Из-за своей высокой перегрузочной способности IGBT не боятся перегрузки по току, которая происходит в начале включения.

3.8 Монтаж модулей

Для обеспечения большей эффективности теплообмена между изолирующей подложкой силового модуля и радиатора их поверхности должны соответствовать следующим требованиям:

- Поверхности не должны иметь на своей поверхности твердых частиц;
- Перед установкой на охладитель поверхности необходимо обезжирить;
- Шероховатость поверхностей не должна превышать 10 мкм (R_z: < 10 мкм);
- Отклонение от плоскостности должно быть менее 20 мкм на расстоянии до 100 мм.

При монтаже модулей крепежными болтами должны быть выполнены следующие рекомендации:

- Все крепёжные болты должны быть одинаково затянуты с указанным моментом затяжки;
- Рекомендуется использовать инструмент с электронным управлением или, по крайней мере, электрическая отвёртка с малой скоростью вращения;
- Не рекомендуется использовать пневматические отвёртки из-за их недостаточной точности.

После окончания монтажа рекомендуется дополнительно защитить крепежные детали от коррозии смазками ЦИАТИМ-221 ГОСТ 9433 или ВНИИ НП-207 ГОСТ 19774

Порядок затяжки модулей:

- 1. Свободно (не жёстко) зафиксировать модуль двумя диагональными болтами. Слегка придавить модуль рукой и равномерно распределить пасту лёгкими движениями.
- 1. Затянуть болты крест-накрест с усилием 0.5 Hм ± 15%.
- 2. Выдержать не менее 30 мин. Позволить пасте растечься и заполнить пустоты
- 3. Затянуть болты с усилием 3...5 Нм в такой же последовательности.

IGBT модули крепятся к охладителю винтами высокой твердости с обязательным использованием плоских и стопорных шайб. Последовательность крепления винтов указана на рисунке 21.

Винты, используемые при монтаже, не должны деформироваться при увеличении температуры (как, например, латунные). Это может привести к дополнительным напряжениям и растрескиванию внутренних компонентов модуля.

Рисунок 21. Порядок затяжки модулей

Демонтаж модулей производится в обратном порядке.

3.8.1 Термопаста

а

Требования к термопасте:

- Термопаста не должна иметь в себе твердых включений. Это позволит избежать деформации поверхности;
- Термопаста должна сохранять свои свойства все время эксплуатации прибора;
- Максимальная температура пасты должна быть не ниже максимальной температуры прибора под нагрузкой (запас по температуре минимум 10%);
- Ресурс работы пасты должен быть не меньше ресурса работы модуля.

Рисунок 22. Гребёнка для измерения толщины слоя термопасты

Перед нанесением термопасты поверхности прибора и радиатора

необходимо очистить и обезжирить. Для очистки рекомендуется использовать безворсовую ткань и все работы проводить в перчатках. Следует избегать попадания пасты на охладитель, поскольку паста, попавшая в резьбовые отверстия, может привести к недостаточному моменту затяжки.

Толщину слоя пасты можно проконтролировать при помощи специального гребешка ("Wet film comb ", см. рисунок 22). Толщина пасты определяется как среднее между значением наибольшего «покрытого» (или «мокрого») зубца и значением наименьшего «непокрытого» (или «сухого») зубца.

3.8.2 Соединительные шины

Для снижения паразитной индуктивности токоведущих проводников самым простым решением будет расположение их в непосредственной близости друг от друга, в результате чего паразитные индуктивности компенсируются.

Для предотвращения перенапряжений на силовых ключах, при коммутации больших токов с высокой частотой, шины должны обеспечивать:

- Идентичность топологии во всех параллельных цепях, для статической и динамической токовой балансировки;
- Минимальную индуктивность контура протекания тока источника. Рекомендуется применять плоские бифилярные шины, разделенные изолятором;
- Минимальное значение сопротивлений;
- Достаточное сечение для обеспечения допустимой плотности тока;
- Достаточное напряжение изоляции.

При соединении модулей шиной необходимо учитывать тепловое расширение шин при их нагреве током, или использовать гибкие шины.

Идеальный вариант – применение многослойной шины. В многослойной, силовой шине происходит равномерное распределение тока между слоями, а верхний и нижний слои экранируют внутренние, обеспечивая низкий уровень помех.

Рисунок 23. Многослойная шина.

Также в данном разделе стоит упомянуть и фильтрующие конденсаторы, так как они располагаются непосредственно на силовых шинах установок.

Располагать фильтрующие конденсаторы следует параллельно движению тока в силовых проводниках. Это позволяет снизить паразитную индуктивность из-за уменьшения площади «токовой петли». Более того, если заменить конденсатор большой емкости двумя менее ёмкими, это позволит еще снизить площадь токовой петли. Таким образом, только благодаря правильному расположению фильтрующих конденсаторов, можно понизить паразитную индуктивность примерно в 6 раз.

Рисунок 24. Расположение выводов конденсатора перпендикулярно движению тока - а, расположение выводов конденсатора параллельно движению тока - б.

3.8.3 Механическое воздействие и воздействие окружающей среды

В конструкции модулей присутствуют хрупкие керамические детали, поэтому запрещается делать следующее:

- Для предотвращения механического разрушения модулей не рекомендуется изгибать силовые и управляющие выводы, а также прикладывать к ним значительные механические нагрузки;
- Запрещается модули ронять и наносить какие-либо удары по их корпусу и основанию;
- Выводы модулей, включая места их присоединения к модулю, должны быть прочно закреплены.
- К втычным соединениям запрещается прикладывать усилие сочленения более 23 Н
- К силовым выводам запрещается прикладывать воздействие крутящего момента:
 - Для модуля в корпусе типа MIAA 2.5±0.25 Нм;
 - Для модуля в корпусе типа MIFA 2.0±0.25 Нм.

Для нормальной работы модуля рекомендуется соблюдать следующие условия (климатическое исполнение модулей У, категория размещения 2, в соответствии ГОСТ 15150-69):

- Для модулей должны быть созданы условия препятствующие конденсации влаги на корпусе;
- Модули должны быть защищены от прямого попадания на них влаги;
- Модули должны быть защищены от воздействия газов способствующий коррозии выводов и оснований (пары кислот, двуокись серы, газообразный хлор и пр.).

ПРИЛОЖЕНИЕ 1 ПЕРЕЧЕНЬ ПАРАМЕТРОВ ДЛЯ ІGBT МОДУЛЕЙ.

Обозн.	Параметр	Описание параметра		
UCES	Максимально допустимое напряжение коллектор- эмиттер	Максимально допустимое напряжение между выводами коллектора и эмиттера при заданном токе коллектора		
lc	Максимально допустимый постоянный ток коллектора	Максимальный постоянный ток коллектора		
I _{CRM}	Максимальный повторяющийся импульсный ток коллектора	Импульсное значение тока коллектора при работе в импульсном режиме (повторяющиеся импульсы).		
t _{psc}	Длительность короткого замыкания	Максимальное время, в течение которого IGBT может находиться в режиме КЗ в нагрузке		
U _{GES}	Напряжение затвор-эмиттер	Максимальное напряжение между затвором и эмиттером. Коллектор-эмиттер закорочены.		
Urrm	Повторяющееся импульсное обратное напряжение	Максимальное мгновенное значение обратного напряжения, включая повторяющиеся, но исключая неповторяющиеся выбросы		
lF	Прямой ток	Постоянный прямой ток диода		
I _{FRM}	Повторяющийся прямой импульсный ток	Максимальное значение повторяющегося импульсного тока диода		
RBSOA	Область безопасной работы при выключении	Область токов коллектора и напряжений коллектор- эмиттер, в которой IGBT способен выключаться без разрушения		
U _{CEsat}	Напряжение насыщения коллектор-эмиттер	Напряжение насыщения коллектор-эмиттер (падение напряжения на включенном IGBT) при определенном напряжении на затворе и определенном токе коллектора I _C		
$U_{\text{GE}(\text{th})}$	Пороговое напряжение затвор-эмиттер	Напряжение затвор-эмиттер, при котором ток коллектора достигнет заданного низкого значения (канал начнёт открываться и потечёт ток).		
I _{CES}	Ток утечки коллектор-эмиттер	Ток коллектор-эмиттер при заданном напряжении коллектор-эмиттер в закрытом состоянии.		
I _{GES}	Ток утечки затвор-эмиттер	Ток утечки между затвором и эмиттером. Коллектор- эмиттер закорочены.		
Cies	Входная ёмкость	Ёмкость между затвором и эмиттером		
Coes	Выходная ёмкость	Ёмкость между коллектором и эмиттером		
Cres	Обратная передаточная ёмкость (ёмкость Миллера)	Ёмкость между коллектором и затвором		
Q _G	Заряд затвора	Полный заряд, который нужно подать/извлечь из затвора для изменения состояния транзистора. Позволяет рассчитать ток затвора, необходимый для переключения транзистора за определённое время		
R _{Gint}	Сопротивление затвора	Внутреннее последовательное сопротивление затвора		
t _{d(on)}	Время задержки включения	Временной интервал между моментами, когда напряжение затвор-эмиттер достигает оговорённого		

		малого значения, и когда ток коллектора I _C достигает оговорённого малого значения.
tr	Время нарастания	Временной интервал между моментами, в которые ток коллектора I _C возрастет с оговорённого малого до оговорённого большого значения.
Eon	Энергия потерь при включении	Интеграл по времени от мгновенной мощности рассеяния (произведение тока коллектора и напряжения коллектор-эмиттер) на отрезке времени от момента, когда напряжение затвор-эмиттер достигает 10 % от максимального значения до момента, когда напряжение коллектор-эмиттер достигнет оговоренной малой величины (например, 3% от исходного значения перед включением).
t _{d(off)}	Время задержки выключения	Временной интервал между моментами, когда напряжение затвор-эмиттер (удерживающее IGBT во включенном состоянии) снизится до оговорённого большого значения, и когда ток коллектора упадет до оговорённого большого значения.
t _f	Время спада	Временной интервал между моментами, в которые ток коллектора I _C уменьшается с оговорённого большого до оговорённого малого значения.
E _{off}	Рассеивание энергии при выключении за один цикл	Интеграл по времени от мгновенной мощности рассеяния (произведение тока коллектора и напряжения коллектор-эмиттер) на отрезке времени от момента, когда напряжение затвор-эмиттер достигает 90 % от максимального значения до момента, когда ток коллектора достигнет оговоренной малой величины (например, 3% от исходного значения перед выключением)
R _{th(j-c)}	Тепловое сопротивление переход-корпус	Характеризует перепад температур, возникающий при стационарном распространении потока тепловой мощности от наиболее нагретой области полупроводникового кристалла до внешней поверхности основания модуля, прилегающей к охладителю.
U _F	Постоянное прямое напряжение диода	Установившееся значение прямого напряжения при заданном постоянном прямом токе
trr	Время обратного восстановления диода	Время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента, когда обратный ток (или его линейная аппроксимация), уменьшаясь от максимального импульсного значения, достигает заданного значения
I _{RRM}	Повторяющийся импульсный обратный ток диода	Наибольшее мгновенное значение импульсного обратного тока диода, находящегося в запертом состоянии, исключая ток при восстановлении диода
Qrr	Заряд обратного восстановления	Заряд, протекающий через внешнюю цепь в узлах анод (катод) диода в течение времени его обратного

		восстановления
E _{rec}	Энергия потерь при обратном восстановления	Энергия потерь диода в переходном процессе обратного восстановления.
U _(TO)	Пороговое напряжение диода	Напряжение, полученное пересечением кусочно- линейной апроксимации ВАХ с осью напряжений
ŕT	Динамическое сопротивление прямой ВАХ диода	Значение сопротивления при кусочно-линейной аппроксимации прямой вольт-амперной характеристики диода