Инструменты, цифровые технологии, связь, измерения

Микропроцессорные реле защиты. Как они устроены? Часть V, заключительная

20 октября 2010 г. в 11:00

В части V рассматриваются конструкция и принцип действия источников питания МУРЗ.

Внутренний источник питания

Источник питания является важнейшей составной частью МУРЗ, от надежности которой зависит работоспособность релейной защиты. В МУРЗ используются исключительно импульсные источники питания (ИИП), которые были впервые разработаны в 60-х годах прошлого века, интенсивно развивались в течение десятков лет и сегодня почти полностью вытеснили линейные источники питания (ЛИП) практически во всех областях техники. В чем же разница между этими двумя типами источников питания и чем ИИП так хороши?

Широко применявшиеся повсеместно в технике на протяжении многих десятков лет ЛИП являются весьма простыми и даже примитивными устройствами, рис. 47, состоящими всего лишь из нескольких элементов: понижающего трансформатора, выпрямителя, сглаживающего фильтра на основе конденсатора и полупроводникового стабилизатора (стабилитрон с мощным транзистором, или аналогичный по функции одиночный силовой полупроводниковый элемент).

В отличие от них, ИИП являются значительно более сложными устройствами, работающими на высокой частоте и состоящими из сотен активных и пассивных элементов, рис. 48.

В чем же основные принципиальные отличия между этими двумя типами источников? В ЛИП входное переменное напряжение сначала понижается до необходимого уровня (или уровней, в случае многообмоточного трансформатора) с помощью трансформатора, затем выпрямляется диодным мостом, фильтруется с помощью электролитического конденсатора и стабилизируется нелинейным электронным элементом. Напряжение до стабилизирующего элемента выбирается большим, чем номинальное выходное напряжение источника, а его излишек гасится (рассеивается) в виде тепла на этом стабилизирующем элементе (что требует иногда использования радиаторов).

Наличие некоторого излишка напряжения позволяет осуществлять стабилизацию выходного напряжения источника как при уменьшении, та и при увеличении входного напряжения за счет изменения доли энергии, рассеиваемой на стабилизирующем элементе. По этой причине, к.п.д. такого источника всегда намного ниже единицы.

В ИИП входное переменное напряжение сначала выпрямляется диодным мостом (или просто проходит без изменения через диоды этого моста в случае питания источника от сети постоянного тока), сглаживается и поступает на коммутатор (обычно, ключевой элемент на базе MOSFET транзистора), с помощью которого постоянное напряжение «нарезается» на узкие полоски (частота коммутатора составляет 70–700 кГц для мощных источников и 1—3 Мгц для маломощных).

Сформированные таким образом прямоугольные высокочастотные импульсы поступают на трансформатор, выходное напряжение которого соответствует требуемому уровню напряжения, которое затем выпрямляется и фильтруется. Стабилизация уровня выходного напряжения при изменении уровня входного напряжения осуществляется с помощью цепи обратной связи, состоящей из специально предназначенного для этой цели драйвера, обеспечивающего широтно-импульсную модуляцию (ШИМ или PWM) сигнала управления коммутатором через узел гальванической развязки (обычно, дополнительный развязывающий трансформатор). Этот драйвер представляет собой небольшую, но достаточно сложную микросхему, отслеживающую выходное напряжение источника и изменяющую ширину импульсов управления в ту или иную сторону, при отклонении уровня выходного напряжения от заданного значения. Такую структуру имеют дешевые источники питания. Более качественные и дорогие ИИП содержат, как минимум, два дополнительных узла: входной высокочастотный фильтр и корректор коэффициента мощности, рис. 48. Первый нужен для защиты питающей сети (то есть всех остальных потребителей, питающихся от той же сети, что и ИИП) от высокочастотных гармоник, генерируемых в сеть ИИП. Второй применяется для увеличения коэффициента мощности источника питания. Проблема коррекции коэффициента мощности возникает в связи с наличием диодного моста и со сглаживающим конденсатором на входе ИИП. При таком включении конденсатор потребляет из сети ток импульсами, только в те моменты времени, когда мгновенное значение синусоидально изменяющегося входного напряжение становится больше напряжения на конденсаторе (из-за его разряда на нагрузку). В остальное время, когда напряжение на конденсаторе больше мгновенного входного, диоды моста оказываются запертыми обратным напряжением конденсатора и потребление тока отсутствует. В результате, ток, потребляемый ИИП, оказывается существенно сдвинутым по фазе относительно напряжения, рис. 49а.

При большом количестве ИИП, подключенных к сети переменного тока, общее снижение коэффициента мощности в сети становится уже заметным (типичное значение коэффициента мощности ИИП без корректировки 0,65) в связи с чем, применяется его активная коррекция с помощью так называемого корректора коэффициента мощности (ККМ или PFC — power phase corrector).

ККМ представляет собой самостоятельный преобразователь напряжения, так называемый «бустерный конвертер» (boost converter — BC), снабженный специальной схемой управления, рис. 50.

Основными элементами ВС являются: дроссель L, диод VD2, конденсатор C2 и быстродействующий ключевой элемент VT на базе MOS-FET транзистора. Работа этого устройства основана на явлении возникновения импульсов повышенного напряжения обратной полярности на индуктивности, при разрыве тока в ее цепи. Транзистор VT с большой частотой (обычно, 200 кГц) включает и выключает ток в цепи индуктивности L, а образующиеся при этом импульсы повышенного напряжения через диод VD2 заряжают конденсатор С2, от которого питается нагрузка (в нашем случае, собственно ИИП). Таким образом, напряжение на конденсаторе С2 всегда выше входного напряжения ВС. Благодаря этому свойству ВС они получили большое распространение в электронных устройствах в качестве преобразователя напряжения стандартного гальванического элемента (1,2–1,5 В) в другое стандартное напряжение 5 В, необходимое для управления микросхемами. В нашем случае конденсатор С2 заряжается до напряжения 385–400 В. Благодаря тому, что конденсатор С1 имеет очень небольшую емкость (это, по сути, высокочастотный фильтр), а схема управления с ШИМ ключевого элемента постоянно отслеживает фазу входного переменного напряжения и обеспечивает соответствующую привязку импульсов управления (то есть импульсов тока)к фазе напряжения, удается практически полностью устранить сдвиг фаз между током и напряжением, потребляемым накопительным конденсатором С2, рис. 49b. Кроме того, эта же схема управления обеспечивает жесткую стабилизацию напряжения заряда конденсатора С2. Несмотря на малые габариты микросхемы управления ККМ, она имеет довольно сложную внутреннюю структуру, рис. 51, а в целом, с учетом большого количества необходимых пассивных элементов, устройство ККМ получается довольно сложным и занимает весьма заметную площадь печатной платы ИИП, рис. 52.

Почему же такие сложные устройства вытеснили с рынка простые и хорошо зарекомендовавшие себя ЛИП?

Основными преимуществами ИИП перед ЛИП, которые обычно указываются в технической литературе являются:

  1. Значительное уменьшение размеров и массы за счет меньшего понижающего трансформатора (высокочастотный трансформатор имеет значительно меньшие габариты и массу по сравнению с трансформатором промышленной частоты той же мощности).
  2. Возможность работы в очень широком диапазоне изменения входного напряжения.
  3. Значительно более высокий к.п.д. (до 90—95%, против 40–70% для ЛИП).
  4. От себя добавим еще одно важное преимущество: возможность работы от сети и переменного, и постоянного тока.

Даже при беглом взгляде на два одинаковых по мощности и по свойствам источника питания хорошо заметны характерные отличия между ЛИП (слева) и ИИП (справа): ЛИП намного проще, но содержит значительно более крупный и тяжелый трансформатор (Т), рис. 53.

Плоский модуль ИИП (рис. 53, справа) является универсальным источником питания микропроцессорных реле защиты серии SPAC, SPAD, SPAU и др., который вдвигается по направляющим в корпус реле. Естественно, использовать в такой конструкции ЛИП с крупным трансформатором затруднительно.

Но, что мешает вместо одного крупного многообмоточного трансформатора с тремя выходными напряжениями применить три отдельных маленьких трансформатора, для которых вполне достаточно места на печатной плате ЛИП? В этом случае габаритные размеры ЛИП будут не намного отличаться от ИИП. Даже в случае мощного источника с одним уровнем выходного напряжения можно использовать несколько плоских трансформаторов, соединенных между собой параллельно. Так что наличие малого по размерам трансформатора не является абсолютным преимуществом ИИП.

Что касается очень широкого диапазона входных напряжений, при которых обеспечивается работоспособность ИИП за счет использования ШИМ в системе управления основного ключевого элемента, то это преимущество представляется нам весьма условным. Ну, действительно, так уж важно на практике, что ИИП может работать при входных напряжениях, изменяющихся в пределах от 48 до 312 В? Ведь этот диапазон охватывает сразу несколько рядов номинальных напряжений, таких как: 48, 60, 110, 127, 220 В. Совершенно очевидно, что в конкретной аппаратуре ИИП будет работать при каком-то одном номинальном напряжении (изменяющемся в пределах не более, чем ±20%), а не сразу на всех одновременно. А если необходимо использовать аппаратуру при напряжении и 110 В и 220 В, то для этого существуют хорошо известные решения в виде маленького переключателя и отвода от обмотки трансформатора.

Коэффициент полезного действия является важным показателем, если речь идет о мощном источнике, а не об источнике мощностью 25–100 Ватт, которые мы рассматриваем. Кроме того, высокий к.п.д. и отсутствие заметного выделения тепла (что характерно для ИИП) может быть важно в миниатюрном переносном источнике питания полностью закрытого исполнения, например в таком, как источник питания лэптопов. Во множестве других случаев, например, в источниках питания контроллеров и электронных реле промышленного назначения вопрос о к.п.д. источника питания не является актуальным. Возможность работы от сети постоянного тока является важнейшим и абсолютным преимуществом ИИП. Линейные источники принципиально не могут работать от сети постоянного тока.

Вот, вкратце, анализ преимуществ ИИП перед ЛИП. Рассмотрим теперь недостатки ИИП.

К недостаткам ИИП можно отнести наличие высокого уровня импульсных шумов на выходе источника, рис. 54.

В отличие от ЛИП с его слабой 50-герцовой пульсацией, пульсации выходного напряжения в ИИП как правило, имеют значительно большую амплитуду и лежит в диапазоне от нескольких килогерц до нескольких мегагерц, что создает проблемы распространения излучений в цепи электронной аппаратуры для питания которой предназначен ИИП, а также (по проводам и даже через эфир) в цепи совершенно посторонних электронных приборов. Кроме того, в ИИП приходится принимать специальные меры для предотвращения проникновения высокочастотных излучений в питающую сеть (по которой они распространяются и могут нарушить работу других электронных приборов) путем использования специальных фильтров, рис. 55.

Наличие высокочастотной составляющей в выходном напряжении и в промежуточных узлах схемы предъявляет повышенные требования к многочисленным электролитическим конденсаторам, имеющимся в схеме ИИП, которые, к сожалению, редко учитываются разработчиками ИИП. Как правило, типы этих конденсаторов выбираются лишь по емкости, рабочему напряжению и габаритам, без учета их характеристик на высокой частоте. А между тем, далеко не все типы конденсаторов способны длительно работать под воздействием напряжения высокой частоты, а лишь имеющие низкий импеданс на высоких частотах. В результате не учета этого обстоятельства электролитические конденсаторы заметно нагреваются из-за повышенных диэлектрических потерь на высокой частоте. Повышенная температура электролита интенсифицирует химические реакции в конденсаторе что, в свою очередь приводит к ускоренному растворению элементов корпуса конденсатора и вытеканию электролита прямо на печатную плату, что при очень плотном монтаже приводит к коротким замыканиям между разнопотенциальными выводами или, наоборот, к обрыву цепей вследствие растворения медных дорожек печатной платы (даже несмотря на наличие прочного покрытия дорожек платы), рис. 56.

Другой распространенный тип повреждений ИИП, обусловленный повышенной температурой электролита — быстрое (в течение нескольких лет) высыхание электролита и значительное (на 30—70%) снижение емкости конденсаторов, что приводит к резкому ухудшению характеристик источника питания, а иногда и полной потере его работоспособности.

Для обеспечения эффективной работы ККМ, силовой коммутационный элемент (обычно, транзистор MOSFET) должен обладать как можно более низким сопротивлением в открытом состоянии. Величина этого сопротивления в значительной степени зависит от максимального рабочего напряжения транзистора. Для транзисторов с максимальным рабочим напряжением 500–600 В это сопротивление составляет 0,05— 0,3 Ома, тогда как, для транзисторов на более высокие напряжения (1000— 1500 В) это сопротивление на один-два порядка выше (например, 12 Ом для транзистора 2SK1794 на напряжение 900 В; 17 Ом для транзистора IXTP05N100 на напряжение 1000 В; 7 Ом для транзистора STP4N150 на напряжение 1500 В). Этим объясняется выбор относительно низковольтных (с максимальным рабочим напряжением 500–600 В) транзисторов для ККМ. Например, в реальных конструкциях ИИП весьма ответственных устройств, используемых в электроэнергетике, таких как микропроцессорные реле защиты и регистраторы аварийных режимов широко применяются транзисторы типов IRF440, APT5025 и др. с максимальным напряжением 500 В, что совершенно недостаточно для работы в промышленной электрической сети с напряжением 220 В из-за наличия значительных коммутационных и атмосферных перенапряжений. Как известно, для защиты от таких перенапряжений электронная аппаратура снабжается, обычно варисторами. Однако, из-за недостаточной нелинейности характеристики вблизи рабочей точки, варисторы выбираются таким образом, чтобы между длительно приложенным рабочим напряжением и напряжением срабатывания под воздействием импульсного перенапряжения (так называемое «clamping voltage») была бы довольно существенная разница. Например, для варисторов любого типа, предназначенных для длительной работы при номинальном напряжении переменного тока 220 В clamping voltage составляет 650–700 В. В источниках питания упомянутых выше микропроцессорных устройствах использованы варисторы типа 20К431 с clamping voltage 710 В. Это означает, что при воздействии импульсов напряжениях с амплитудой ниже 700 В варистор не обеспечит защиты электронных компонентов источника питания, особенно силовых транзисторов (500 В), включенных напрямую в цепь сети.

На высокой рабочей частоте трансформатор и катушка индуктивности в ККМ обладают высоким импедансом, ограничивающим ток, протекающий через них и через коммутирующие элементы. Однако, сбой в работе микросхем, обеспечивающих управление силовыми ключами ККМ или основного силового ключа ИИП (например, в результате воздействия импульсной помехи), приводит к переходу в режим работы на постоянном токе (то есть с очень низким импедансом) и резкой токовой перегрузке сразу многих силовых элементов схемы и мгновенному выходу их из строя. Учитывая высокую плотность монтажа ИИП, это приводит часто к повреждению соседних элементов схемы, выгоранию целых участков печатного монтажа. Вообще-то, что касается надежности, должно быть совершенно ясно, что надежность такого сложного устройства, как ИИП, содержащего множество сложных микросхем и силовых элементов, в том числе, работающих на высоких напряжениях в импульсном режиме с высокими скоростями нарастания тока и напряжения, всегда будет заметно ниже надежности такого простого устройства, как ЛИП, в котором имеется всего лишь несколько электронных компонентов, работающих в линейном режиме.

Плотность монтажа и энергоемкость ИИП постоянно растут, например, источник типа EMA212, рис. 48 (справа), при размерах 12,7×7,62×3 см имеет мощность 200 Ватт. Этому способствует применение схем управления на миниатюрных элементах поверхностного монтажа, очень плотный монтаж силовых элементов, постоянный рост рабочей частоты. Когда-то эта частота не превышала 50–100 кГц. Сейчас уже многие мощные источники с выходным током до 20 А работают на частоте 300–600 кГц, а менее мощные, например, работающие под управлением контроллера ADP1621, уже на частоте более 1 МГц и более, что способствует дальнейшему снижению массогабаритных показателей ИИП. Обратной стороной этой медали (которую всячески рекламируют как достоинство ИИП) становится практически полная потеря ремонтопригодности таких устройств. А нужны ли вообще встроенные источники питания в электронных приборах. контроллерах промышленного назначения, МУРЗ, предназначенные для установки в шкафах управления, рис. 57?

Почему бы не выпускать для комплектных систем автоматики такие устройства, как контроллеры, электронные реле, электронные измерительные преобразователи и т.п. вообще без источников питания, а лишь с разъемом, предназначенным для подключения внешнего источника? Этот внешний источник питания, расположенный в шкафу, должен быть, по-нашему мнению, линейным, иметь хороший запас по мощности, должен быть снабжен необходимыми элементами для защиты от перенапряжений, коротких замыканий, и т.п.

Более того, в шкафах, относящихся к системам автоматики повышенной надежности, таких линейных источников, соединенных между собой через диод, должно быть два (так называемый «горячий» резерв).

Как это ни покажется странным, но в эпоху импульсных источников питания существует множество компаний (VXI, Lascar, Calex Electronics, Power One, HiTek Power, R3 Power и много других) продолжающих выпускать ЛИП, что свидетельствует об их популярности в определенных областях техники и об их доступности для практического применения. По нашему мнению, указанные выше подход позволил бы значительно повысить надежность систем автоматики, телеуправления, релейной защиты (с питанием от сети переменного тока) без увеличения ее стоимости (вследствие меньшей стоимости электронных приборов без встроенных источников питания).

Аналогичный подход может использоваться и в случае питания электронной аппаратуры (например, тех же микропроцессорных реле защиты) установленной в шкафах, от сети постоянного тока, с той лишь разницей, что два общих на шкаф источника питания («горячий» резерв) должны быть импульсными, а не линейными. При этом эти источники должны быть подвергнуты серьезной реконструкции. Во-первых, из них должны быть исключены корректоры коэффициента мощности, как совершенно бессмысленные узлы при питании от сети постоянного тока, что само по себе уже повысит надежность источников. Во-вторых, эти ИИП шкафного типа должны быть достаточно крупными и удобными для поиска неисправностей и ремонта (в источниках шкафного типа нет смысла гнаться за компактностью), они не должны содержать элементов поверхностного монтажа. В-третьих, многочисленные электролитические конденсаторы, имеющиеся в ИИП, должны быть сконцентрированы на отдельной плате, предназначенной для простой замены ее после каждых 5 лет эксплуатации (то есть до того, как конденсаторы начнут выходить из строя). Сетевой фильтр должен использоваться готовый (такие фильтры представлены на рынке сотнями моделей), а не собираться из отдельных элементов, для того, чтобы его можно было просто и быстро заменить в случае необходимости.

Предлагаемые меры, по нашему мнению, позволят снизить зависимость микропроцессорных устройств релейной защиты от вторичных источников электропитания и значительно повысить ее надежность.

Если уж мы заговорили о будущих конструкциях МУРЗ, то следовало бы упомянуть выдвинутую нами ранее идею о том, что будущие МУРЗ должны быть построены по принципу персональных компьютеров, то есть они должны выпускаться и свободно продаваться на рынке в виде набора модулей (печатных плат), стандартизированных по выполняемым функциям, по размерам и типу разъемов и представляющих собой отдельные функциональные модули. Эти модули должны задвигаться по направляющим в специальные металлические шкафы, разделенные переборками на секции, каждая из которых предназначена для одного МУРЗ и снабжена клеммными колодками для подключения внешних кабелей. Нумерация клемм также должна быть стандартизована. Между отдельными печатными платами каждого МУРЗ должны быть установлены заземленные металлические переборки. Шкафы с установленными в них модулями должны быть выполнены по специальной технологии, обеспечивающей защиту от проникновения внешних электромагнитных помех (такие шкафы уже сегодня широко представлены на рынке), а также должны быть снабжены специальными фильтрами, установленными на каждом из входящих в этот шкаф кабеле (такие фильтры также разработаны и широко представлены на рынке). Такая тенденция развития конструкций МУРЗ должна привести, по нашему мнению, с одной стороны к резкому снижению их стоимости за счет появления на рынке новых «игроков», специализирующихся на выпуске отдельных универсальных функциональных модулей МУРЗ, а с другой — к существенному повышению качества МУРЗ, их надежности и устойчивости к внешним электромагнитным воздействиям. Купив однажды МУРЗ, потребитель уже не будет привязан на протяжении 15–20 лет к прихотям и заоблачным ценам на запчасти одной единственной компании (которая, обычно, прекращает выпуск устаревших моделей не заботясь о выпуске запчастей для ремонта этих моделей, все еще находящихся в эксплуатации), как это происходит сегодня, а сможет свободно приобретать необходимые ему модули на рынке, а также обновлять и менять конфигурацию отдельных функциональных модулей МУРЗ. Наличие универсальных функциональных модулей позволит создать в будущем и общую программную платформу (некое существенно упрощенное подобие Windows) с набором прикладных программ и библиотек для конкретных видов защит. А наличие общей программной платформы позволит также автоматизировать процесс диагностики МУРЗ в динамическом режиме путем загрузки в МУРЗ и в симулятор режимов (РЕТОМ, DOBLE, Omicron и др.) полностью соответствующих друг другу наборов уставок и тестовых алгоритмов, что позволит существенно облегчить процесс проверки МУРЗ и резко сократить количество ошибок персонала.

Таким нам видится будущее микропроцессорной релейной защиты. И первым шагом на этом пути будет, очевидно, разработка международных стандартов, формулирующих требования к конструкции и программному обеспечению МУРЗ. Но это уже другая тема...

Правки автора, к ранее опубликованному

К части I статьи

В МУРЗ используется три типа плат, которые обеспечивают соединение между собой всех остальных плат. В первом случае это может быть материнская плата, на которой кроме набора разъемов расположены также микропроцессор, АЦП, различные виды памяти и все сопутствующие им элементы (Рис. 6б). Во втором случае это может быть отдельная жесткая плата с набором разъемов (Рис. 6а), или, в третьем случае — гибкий плоский многожильный кабель с разъемами, соединяющий между собой платы (рис. 6г). Соединительные платы двух последних типов еще иногда называют «кросс-платами».

К части II статьи

На рис. 17 ошибочно обозначены как «полупроводниковые реле» отдельные небольшие платы, расположенных под углом на основной плате. После консультации автора с представителем Французского отделения компании AREVA было установлено, что эти платы — это не выходные, а входные модули, выполненные аналогично описанным в параграфе 4 модулям логических входов других типов, но на элементах поверхностного монтажа. Что касается недостатков полупроводниковых выходных реле, о которых говорится в данном параграфе, то все они верны и релевантны.

В. ГУРЕВИЧ, канд. техн. наук

👉 Подписывайтесь на Elec.ru. Мы есть в Телеграм, ВКонтакте и Одноклассниках

Читайте также
Новости по теме
Объявления по теме

ПРОДАМ: Реле РНПП-301

Реле РНПП-301 (далее «реле») является микропроцессорным цифровым устройством с высокой степенью надежности и точности. Оперативного питания не требуется – контролируемое напряжение одновременно является напряжением питания. Внутренняя схема реле питается по трем фазам, что обеспечивает работоспособность прибора даже от одной из фаз (при наличии «ноля»). По выбору пользователя возможны два режима контроля сетевого напряжения: • режим контроля фазных напряжений. Для его осуществления необходимо снять перемычку между клеммами 8-9 и подключить «ноль» сети к клемме 7. Этот режим рекомендуется там, где для потребителя имеет значение смещение ноля и недопустимы (в пределах выставленной уставки) перекосы фазных напряжений; • режим контроля линейных напряжений. Для его осуществления необходимо установить перемычку между клеммами 8-9, «ноль» сети в этом случае можно не подключать. Этот режим рекомендован там, где для потребителя не имеет значение смещение «ноля» и перекос фазных напряжений, а также в сетях с изолированной нейтралью. По перекосу фаз реле будет срабатывать по линейным напряжениям.
Мясников Николай · ЕССО-Технолоджи · Сегодня · Россия · Чувашская республика - Чувашия
Реле РНПП-301

ПРОДАМ: ОВОД-М дуговая защита, реле, электрооборудование

«ОВОД-М» (ОВОД-МД) устройство дуговой защиты на основе волоконной оптики и микропроцессорной техники для защиты ячеек КРУ, КСО высоковольтных электрических подстанций, применяется на новых объектах и при реконструкции. Устройства защиты и контроля: РНПП-301; РНПП-311; РН-101 и РН-111-однофазные; ПЭФ-301- переключатель фаз; РЭВ-201- реле времени с задержкой включения; МСК-301- блок управления тепловыми и холодильными установками; РН-112- реле макс/мин напряжения; блок PS-220/12-2,5; УБЗ-301- блок защиты асинхронных электродвигателей; БО-01-блок обмена и передачи данных; РН-16Т- суточно-недельный таймер. Наши специалисты готовы провести консультации по электрооборудованию, помочь подобрать оптимальную модель, ответить на Ваши вопросы. Вы можете оформить заказ любым удобным для Вас способом. Наши приборы Вы можете купить оптом и в розницу. Наша компания осуществляет доставку по Москве и всей России в кратчайшие сроки транспортными компаниями (Деловые Линии, СДЭК) и почтой России. Получить Ваш заказ Вы на можете на терминалах транспортных компаний в городах: Абакан, Альметьевск, Ангарск, Апатиты, Арзамас, Армавир, Архангельск, Асбест, Астрахань, Ачинск, Балаково, Балашиха, Барнаул, Белгород, Белорецк, Бердск, Березники, Березовский, Бийск, Благовещенск, Борисоглебск, Боровичи, Братск, Брянск, Бузулук, Великие Луки, Великий Новгород, Владивосток, Владикавказ, Владимир, Волгоград, Волгодонск, Волжский, Вологда, Воркута, Воронеж, Воскресенск, Всеволожск, Выборг, Гайдук, Глазов, Грозный, Дзержинск, Димитровград, Дмитров, Домодедово, Ейск, Екатеринбург, Забайкальск, Зеленоград, Златоуст, Зубчаниновка, Иваново, Игнатово, Ижевск, Иркутск, Йошкар-Ола, Казань, Калининград, Калуга, Каменск-Уральский, Каменск-Шахтинский, Камышин, Качканар, Кемерово, Керчь, Киров, Кирово-Чепецк, Клин, Клинцы, Ковров, Коломна, Комсомольск-на-Амуре, Королев, Кострома, Котельники, Котлас, Красногорск, Краснодар, Краснокамск, Красноярск, Кузнецк, Курган, Курск, Ленинск-Кузнецкий, Ливны, Липецк,...
Смолич Елена · НПК Электроэнергетика · 17 апреля · Россия · Московская обл
ОВОД-М дуговая защита, реле, электрооборудование

ПРОДАМ: Устройство дуговой защиты, низковольтные реле (н/м)

Устройство дуговой защиты «ОВОД-МД»- изготавливается с использованием волоконной оптики и микропроцессорной техники. Может быть использовано для защиты ячеек КРУ и КСО электрических подстанций, находящихся на реконструкции и на строящихся. Электронный переключатель фаз ПЭФ-301, реле напряжения, перекоса и последовательности фаз РНПП-301, РНПП-311, РНПП-302, РНПП-311М, реле напряжения РН-101, РН-111, реле контроля напряжения :РКН, ЕЛ, РКФ, двухканальное реле времени РЭВ-201; реле времени серий РВО, РВП, РВЦ, РВ3, РСИ, реле минимального/максимального напряжения РН-112, суточно- недельный таймер РН-16 ТМ, универсальный блок защиты электродвигателей УБЗ-301М, блок обмена БО-01, электронные счетчики импульсов СИМ, термисторная защита РТ, фотореле ФР, термореле ТР, датчики оптические ВИКО, блок управления тепловыми приборами или холодильными машинами МСК-301.
Устройство дуговой защиты, низковольтные реле (н/м)

ПРОДАМ: Источник электропитания МВ91.22, МВ91.11 для ГСП МикроДАТ

Ремонт и продажа источника электропитания МВ91.22, МВ91.11 для ГСП МикроДАТ (модернизированный). Выключатель на встроенный вентилятор находится на лицевой стороне блока. Более 25 лет опытной эксплуатации. Гарантия. Договор, счёт.
Firsov Viacheslav · 10 апреля · Россия · Нижегородская обл
Источник электропитания МВ91.22, МВ91.11 для ГСП МикроДАТ

ПРОДАМ: Устройство оптоволоконной дуговой защиты ОВОД-МД (н/м)

Принципиальное отличие от других защит -в зоне действия электрической дуги находятся только пассивные компоненты Устройство дуговой защиты изготавливается с использованием волоконной оптики и микропроцессорной техники. Может быть использовано для защиты ячеек КРУ и КСО электрических подстанций, находящихся на реконструкции и на строящихся. Основные преимущества: 1. Тип датчика -оптоволоконный, защита радиального типа . 2. Автоматическая проверка работоспособности всего оптоволоконного тракта (от линзы до выходных реле). 3. Фиксация дугового разряда на начальном этапе формирования – искровом (искрение на контактах). 4. Функция отключения линейного выключателя при дуге в отсеке ввода/вывода отходящей линии 5. Индикация номера датчика и ячейки, наименование отсека в котором возникла электрическая дуга. 6. Оптоволоконным датчикам не требуется: ориентации датчиков в пространстве, протирки от пыли, защиты от солнца и освещения.
Устройство оптоволоконной дуговой защиты ОВОД-МД (н/м)
Компания «ФАТО Электрик» является производителем и прямым поставщиком низковольтной электротехнической продукции торговой марки HLT. На сегодняшний день ассортимент продукции бренда HLT уже включает в себя более 4000 наименований продукции. Офис и склад общей площадью свыше 1000 м2 находятся в Москве для удобства развития региональной сети дистрибьюции бренда. Фато Электрик осуществляет поставки не только по всей территории Российской Федерации, но и тесно сотрудничает с Республикой Беларусь.